
Interactive System Productivity Facility (ISPF)

Software Configuration and Library
Manager (SCLM) Reference
z/OS Version 1 Release 2.0

SC34-4818-01

���

Interactive System Productivity Facility (ISPF)

Software Configuration and Library
Manager (SCLM) Reference
z/OS Version 1 Release 2.0

SC34-4818-01

���

Note
Before using this document, read the general information under “Notices” on page 283.

Second Edition (October 2001)

This edition applies to ISPF for Version 1 Release 2 of the licensed program z/OS (program number 5694-A01) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:
International Business Machines Corporation
Software Reengineering
Department G7IA / Building 503
Research Triangle Park, NC 27709-9990

FAX (United States & Canada): 1+800+227-5088
IBMLink (United States customers only): CIBMORCF@RALVM17
IBM Mail Exchange: USIB2HPD@VNET.IBM.COM
Internet: USIB2HPD@VNET.IBM.COM

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
Title and order number of this book
Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web. The URL for the site is:
http://www.software.ibm.com/ad/ispf

© Copyright International Business Machines Corporation 1990, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface vii
Who Should Use This Book vii
What Is in This Book vii

Summary of Changes ix
ISPF Product Changes ix
ISPF DM Component Changes ix
ISPF PDF Component Changes xi
ISPF SCLM Component Changes xii
ISPF Client/Server Component Changes xii
ISPF User Interface Considerations xii
ISPF Migration Considerations. xiii

ISPF Profiles xiii
Year 2000 Support for ISPF xiii

What’s in the z/OS V1R2.0 ISPF
library? xv
z/OS V1R2.0 ISPF xv

Elements and Features in z/OS. . . . xvii

Chapter 1. Migrating from Previous
Versions of SCLM 1
FLMCPYLB Statements Required for IOTYPE=A . . 1
Versioning Data Sets 1
Include Sets 1
Year 2000 Support 2
FLMALLOC Processing for IOTYPE S 2
Load Module Accounting Records and SSI
Information. 2

Chapter 2. SCLM Services 5
Invoking the SCLM Services 5

Notation Conventions Used in this Chapter . . . 5
Command Invocation of the SCLM Services . . . 5
The FLMCMD Interface 6
Call Invocation of the SCLM Services 9
The FLMLNK Subroutine Interface 9
Types of Parameters 12
ISPF Variables 17
SCLM Service Return Codes 20

FLMCMD Command Processor Return Codes . . . 21
FLMLNK Call Processor Return Codes 21
SCLM Service Messages 22
SCLM Service Descriptions 23
ACCTINFO—Retrieve Accounting Information . . 25

Command Invocation Format 25
Call Invocation Format 26
Parameters 26
Return Codes. 27

AUTHCODE—Retrieve or Set Authorization Code
for Selected Members 28

Command Invocation Format 28
Call Invocation Format 28

Parameters 29
Return Codes. 30
Examples 30

BUILD—Build a Member 32
Command Invocation Format 32
Call Invocation Format 33
Parameters 33
Return Codes. 35
Examples 35

DBACCT—Retrieve Accounting Records for a
Member 36

Command Invocation Format 36
Call Invocation Format 36
Parameters 36
Return Codes. 37
Example 37

DBUTIL—Generate a Tailored Output Data Set and
Report 38

Command Invocation Format 38
Call Invocation Format 38
Parameters 38
Return Codes. 41
Example 41

DELETE—Delete Database Components 42
Command Invocation Format 42
Call Invocation Format 42
Parameters 43
Return Codes. 43
Examples 44

DELGROUP—Delete Group Database Components 44
Command Invocation Format 45
Call Invocation Format 45
Parameters 45
Return Codes. 47
Examples 48

DSALLOC—Allocate Data Sets for Group/Type . . 48
Command Invocation Format 48
Call Invocation Format 49
Parameters 49
Return Codes. 50
Examples 50

EDIT— Edit a Member of a Controlled Library . . 51
Command Invocation Format 51
Call Invocation Format 52
Parameters 52
Return Codes. 54
Example 54

END— End an SCLM Services Session 54
Command Invocation Format 55
Call Invocation Format 55
Parameters 55
Return Codes. 55
Example 55

EXPORT—Extract SCLM Accounting Information
for a Group 55

Command Invocation Format 56

© Copyright IBM Corp. 1990, 2001 iii

||
||
||
||

||

||
||

Call Invocation Format 56
Parameters 56
Return Codes. 57
Examples 57

FREE—Free an SCLM ID 58
Command Invocation Format 58
Call Invocation Format 58
Parameters 58
Return Codes. 58
Example 58

IMPORT—Import SCLM Accounting Information to
Current Project 59

Command Invocation Format 59
Call Invocation Format 59
Parameters 60
Return Codes. 61
Examples 61

INIT—Generate an SCLM ID 62
Command Invocation Format 62
Call Invocation Format 62
Parameters 62
Return Codes. 63
Example 63

LOCK—Lock a Member or Assign an Access Key . 63
Command Invocation Format 65
Call Invocation Format 65
Parameters 66
Return Codes. 67
Examples 67

MIGRATE—Create Accounting for Selected
Members 68

Command Invocation Format 68
Call Invocation Format 68
Parameters 69
Return Codes. 70
Examples 70

NEXTGRP— Retrieve Next Group in SCLM
Hierarchy 71

Command Invocation Format 71
Call Invocation Format 72
Parameters 72
Return Codes. 72
Examples 72

PARSE—Parse a Member for Statistical and
Dependency Information 73

Command Invocation Format 73
Call Invocation Format 74
Parameters 74
Return Codes. 75
Example 75

PROMOTE—Promote a Member from One Library
to Another. 76

Command Invocation Format 76
Call Invocation Format 76
Parameters 77
Return Codes. 79
Examples 80

RPTARCH—Generate an SCLM Architecture Report 80
Command Invocation Format 81
Call Invocation Format 81
Parameters 81

Return Codes. 82
Example 82

SAVE—Lock, Parse, and Store a Member 83
Command Invocation Format 83
Call Invocation Format 83
Parameters 84
Return Codes. 86
Examples 87

START—Generate an Application ID for a Services
Session 87

Command Invocation Format 88
Call Invocation Format 88
Parameters 88
Return Codes. 88
Example 88

STORE—Store Member Information in an
Accounting Record 89

Command Invocation Format 89
Call Invocation Format 89
Parameters 90
Return Codes. 91
Example 91

UNLOCK—Unlock a Member in a Development
Library 92

Command Invocation Format 93
Call Invocation Format 93
Parameters 93
Return Codes. 94
Examples 94

VERDEL—Delete Version and Audit Information . . 95
Command Invocation Format 95
Call Invocation Format 95
Parameters 95
Return Codes. 96

VERINFO—Retrieve Version and Audit Information 97
Command Invocation Format 97
Call Invocation Format 97
Parameters 97
Return Codes. 99

VERRECOV—Recover a Version 100
Command Invocation Format 100
Call Invocation Format 101
Parameters 101
Return Codes 102

Chapter 3. Sample Programs Using
SCLM Services. 105
Pascal Example. 105

Main Program FLMSRV1 106
Included Member FLMSRV1D 112
Included Member FLMSRV1S 115

PL/I Example 121

Chapter 4. SCLM Macros 127
Notes on Using the SCLM Macros 128
FLMABEG Macro 129

Macro Format 129
Parameters 129
Example 129

FLMAEND Macro 130

iv z/OS V1R2.0 ISPF SCLM Reference

Macro Format 130
Parameters 130

FLMAGRP Macro 130
Macro Format 130
Parameters 130
Example 130

FLMALLOC Macro 130
Macro Format 132
Parameters 133
Example 1 148
Example 2 148
Example 3 148

FLMALTC Macro 148
Macro Format 149
Parameters 149
Example 151

FLMATVER Macro 152
Macro Format 152
Parameters 152
Example 154

FLMCNTRL Macro 155
Macro Format 155
Parameters 157
Example 172

FLMCPYLB Macro 173
Macro Format 173
Parameters 173
Example 174

FLMGROUP Macro 174
Macro Format 175
Parameters 175
Example 1 175
Example 2 176

FLMINCLS Macro 176
Macro Format 177
Parameters 177
Example 1 178
Example 2 178
Example 3 179

FLMLANGL Macro 180
Macro Format 180
Parameters 180
Example 1 182

FLMLRBLD Macro 182
Macro Format 183
Parameters 183
Examples 183

FLMSYSLB Macro 183
Macro Format 184
Parameters 184
Example 184

FLMTCOND Macro 185
Macro Format 186
Parameters 186
Examples 188

FLMTOPTS Macro. 189
Macro Format 189

Parameters 189
Examples 190

FLMTRNSL Macro 190
Macro Format 190
Parameters 191
Examples 195

FLMTYPE Macro 196
Macro Format 196
Parameters 196
Example 196

Chapter 5. SCLM Translators. 197
FLMCSPDB DB2 Bind/Free Translator 199
FLMDTLC DTL Processor Build Translator . . . 202
FLMLPCBL COBOL Parser 203
FLMLPFRT FORTRAN Parser 206
FLMLPGEN General Purpose Parser 210
FLMLRASM REXX Assembler Parser 214
FLMLRCBL REXX COBOL Parser 218
FLMLRCIS MVS C/C++ parser with include set
support 222
FLMLRC2 C, C++, and Resource file parser for
workstation source 225
FLMLRC37 REXX C370 Parser. 228
FLMLRDTL REXX DTL Parser. 232
FLMLRIPF Script and OS/2 IPF Source Parser . . 233
FLMLSS General Purpose Parser 236
FLMLTWST Workstation Build Translator 240
FLMTBMAP Build Map Print - Build Translator 256
FLMTMSI Interface to SCRIPT/VS 258
FLMTPRE 259
FLMTPST 261
FLMTXFER Workstation Transfer - Build Translator 263
SCLM Parser Restrictions 266

Non-Explicit References 266
Separation of References. 267

Chapter 6. SCLM Variables and
Metavariables 269
SCLM Variable and Metavariable Descriptions . . 269
SCLM Variable and Metavariable Tables 270

SCLM Variable Descriptions, Variable Names,
and Their SCLM Functions 271
SCLM Variables and Their SCLM Functions . . 275
SCLM Metavariable Descriptions, Metavariable
Names, and Their SCLM Functions 279
SCLM Metavariable Contents 279

Description of Group Variables 281

Notices 283
Programming Interface Information 284
Trademarks 284

Glossary of SCLM Terms 285

Index 289

Contents v

||
||
||
||

vi z/OS V1R2.0 ISPF SCLM Reference

Preface

This book provides reference and usage information, along with conceptual and
functional descriptions of the Software Configuration and Library Manager
(SCLM).

Who Should Use This Book
This book is for:
v Application developers whose projects are controlled by SCLM
v Project administrators who use SCLM to manage the development process.

What Is in This Book
This manual assumes that you are familiar with the operation of ISPF in the MVS*
environment.

All SCLM users should read Chapters 1, 2, and 3 of ISPF Software Configuration and
Library Manager (SCLM) Developer’s and Project Manager’s Guide. The rest of the
chapters in this manual assume that you have read and understood Chapter 1 of
ISPF Software Configuration and Library Manager (SCLM) Developer’s and Project
Manager’s Guide.

Chapter 2. SCLM Services, introduces and describes the services that are used to
retrieve and process certain information that you store in the project hierarchies. It
lists the general categories of SCLM service return codes and provides command
and call invocation formats, return codes, and parameters for each service. It also
explains the notation conventions used to document the services.

Chapter 3. Sample Programs Using SCLM Services, provides sample programs in
Pascal and PL/I that allow you to invoke SCLM services.

Chapter 4. SCLM Macros, introduces and describes the macros that are used to
create project definitions for SCLM. It also explains the notation conventions used
to document the macros.

Chapter 5. SCLM Translators, describes the translators delivered with SCLM. For
each translator, there is a brief description, a list of input parameters, and a list of
return codes with the appropriate user and project administrator responses.

Chapter 6. SCLM Variables and Metavariables, lists the SCLM variables and
identifies each function with which they can be used.

The Glossary of SCLM Terms and Index sections are available for your reference.

© Copyright IBM Corp. 1990, 2001 vii

viii z/OS V1R2.0 ISPF SCLM Reference

Summary of Changes

z/OS V1R2.0 ISPF contains the following changes and enhancements:
v ISPF Product and Library Changes
v ISPF Dialog Manager Component Changes (including DTL changes)
v ISPF PDF Component Changes
v ISPF SCLM Component Changes
v ISPF Client/Server Component Changes

ISPF Product Changes
Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number in the format ISPF x.y, where x.y indicates:
v <= 4.2 means the version.release of ISPF
v = 4.3 means ISPF for OS/390 release 2
v = 4.4 means ISPF 4.2.1 and ISPF for OS/390 release 3
v = 4.5 means ISPF for OS/390 Version 2 Release 5.0
v = 4.8 means ISPF for OS/390 Version 2 Release 8.0
v = 5.0 means ISPF for OS/390 Version 2 Release 10.0
v OR
v = 5.0 means ISPF for z/OS Version 1 Release 1.0
v = 5.2 means ISPF for z/OS Version 1 Release 2.0

The ZENVIR variable is used by IBM personnel for internal purposes. The x.y
numbers DO NOT directly correlate to an ISPF release number in all cases. For
example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2
Modification 1.

The ZOS390RL variable contains the ISPF release on your system.

The ZISPFOS system variable contains the level of ISPF code that is running as
part of the operating system release on your system. This might or might not
match ZOS390RL. For this release, the variable contains ISPF for z/OS 01.02.00.

New system variables:

ZDAYOFWK
The day of the week.

The ISRDDN utility is now documented in the ISPF User’s Guide.

ISPF DM Component Changes
The DM component of ISPF includes the following new functions and
enhancements:
v Add support for ″VER(&variable,IPADDR4)″.
v Add the NOSETMSG parameter to the CONTROL Service.
v Add the LFORMAT parameter to the VDEFINE Service to allow defining like

format variables in a list.
v Change tutorial processing to eliminate the ″End of data″ message on scrollable

area panels that display the entire scrollable area on the screen (no More: + - is
displayed). This change eliminates the extra enter the user had to execute before
continuing to the next panel.

© Copyright IBM Corp. 1990, 2001 ix

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|

v Issue a TSO line message when a help panel is not found and continue the
dialog. Previously ISPF issued a severe error message when a help panel could
not be found.

v Display a message indicating a message is not found when running in Dialog
Test and allow the dialog to continue.

v Add support for extended SBCS and DBCS CCSIDs:
– 1159 Traditional Chinese
– 1364 Korean
– 1371 Traditional Chinese
– 1388 Simplified Chinese
– 1390 Japanese
– 1399 Japanese

v Add new Z variables to support 5 character code pages and character sets,
ZTERMCP5 and ZTERMCS5 respectively.

v Add new variable ZDAYOFWK to show the day of the week.
v Enhance the Reflist function of TEST option 7.6 to allow better list management.
v Enhance Locate and Find for Dialog Test Variables (option 7.3).
v A new exec called ISPCMDTB to convert ISPF command tables to DTL.
v A new Configuration Table variable to allow SCROLL defaults.
v A new Configuration Table variable to allow STATUS AREA defaults.

ISPDTLC enhancements:

ISPDTLC changes include new invocation options, new tags, and new tag.
attributes as ISPF extensions to the Dialog Tag Language

General improvements:
v New invocation options:

– no new invocation options in this release
v New tags:

– DLDIV, DTDIV, DTHDIV for dividers within the DL tag
– PLDIV, PTDIV for dividers within the PARML tag

v Replication added to predefined entities. For example, >SYM(5); will create
the string ’>>>>>’ in the substituted text.

v National language text strings are now accessible as entities. For example,
&command; will create the string ’Command’ or its translated equivalent in the
substituted text.

v New ENTITY keywords COPIES, X2C and ATTR.
v New macro tag default initialization processing syntax.

<?dummy ?var=value>

v New Predefined ENTITY keywords cmdpmt (&cmdpmt;) and rptr (&rptr;).

New or changed tag attributes:

Tag name Attribute update

CHECKI Add support for ″VER(&variable, IPADDR4)″

COMPOPT Add ADD.

x z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|
|

|

|

|

|

|

|||

||

||

Tag name Attribute update

DL Add FORMAT.

Support multiple DT tags for each DD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a DT tag.

DT Add FORMAT, NOSKIP.

DTAFLD Add AUTOTYPE, AUTOVOL, AUTODMEM.

HELP Add ZUP, ZCONT.

Hn Add COMPACT.

HP Add INTENSE.

NOTE Add NOSKIP.

NT Add NOSKIP.

PANEL Add ZUP, ZCONT, AUTONRET, AUTOTCMD.

PARML Add FORMAT.

Support multiple PT tags for each PD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a PT tag.

PT Add FORMAT, SKIP.

SELFLD Add SELCHECK.

Support INIT=init-value for single-choice selection fields.

ISPF PDF Component Changes
The ISPF PDF component contains the following new functions and enhancements:
v A MEMBER command has been added to data set list (option 3.4) to allow the

partitioned data sets in the list to be searched for a specific member.
v When the EDIT service is specified with an initial macro, parameters can now be

specified for the initial macro.
v A FIND command has been added to member list to allow a string to be

searched for in any of the displayed statistics.
v A SRCHFOR command has been added to data set list to allow SuperC to be

invoked to search the listed data sets for strings.
v Move/Copy will now dynamically calculate the sized for the IEBCOPY SYSUT3

and SYSUT4 data sets.
v A QUERYENQ service has been added to retrieve ENQ information about a data

set in use.
v LMF has been removed from the ISPF product.
v A new SuperC option FINDALL has been added to specify that all strings must

be found to issue a ″strings found″ return code.
v LMPRINT will now allow the INDEX parameter to be specified for a record

format U data set.
v Foreground and Batch now support the z/OS C/C++ compiler.

Summary of Changes xi

||

||

|

|

|

||

||

||

||

||

||

||

||

||

|

|

|

||

||

||
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

v A new AUTOTYPE command can be set to a PFKEY to retrieve a data set name
or pattern entered on a panel based on data sets that start with that partial
name.

v Data sets with an LRECL less than 10 bytes can be edited or viewed.
v The Edit CUT and PASTE command defaults have been added to the ISPF

Configuration Table.
v The Edit CUT and PASTE default behaviors have been modified to use CUT

REPLACE and PASTE KEEP.
v The BARRIER keyword has been added to the SELECT for Edit macros.
v A program called ISREMSPY that can be invoked from an Edit macro to display

the current Edit data.
v The Edit macro commands CURSOR, LINENUM and DISPLAY_LINES can

retrieve line numbers greater than 999999.

ISPF SCLM Component Changes
The ISPF SCLM component contains the following new functions and
enhancements:
v Several enhancements to the Library Utility:

– A member action to initiate Promotion on a member.
– REFRESH command to update the member list contents.
– HIER ON|OFF command to switch between full hierarchy view and single

group view.
– Edit action can create a new member when entered on the command line.
– Ability to select deletion of accounting data or build map only.

v New FLMLRBLD macro to select automated rebuild for members with a
specified language on promotion to listed groups.

v Improved edit models for SCLM services.
v VOL keyword on the FLMCPYLB and FLMSYSLB macros allowing reference to

uncatalogued data sets.
v VIO keyword on the FLMALLOC macro to override the SCLM-calculated

default unit of DASD or VIO for temporary data sets.
v Supplied parsers and translators are all loaded RMODE(31).

ISPF Client/Server Component Changes
The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
″running in GUI mode.″

There are no changes to the ISPF Client/Server for this release.

ISPF User Interface Considerations
Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:
v Use the CUAATR command to change the screen colors
v Use the ISPF Settings panel to specify that the TAB or HOME keys position the

cursor to the command line rather than to the first action bar item

xii z/OS V1R2.0 ISPF SCLM Reference

|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|
|

|

|

v Set the command line to the top of the screen by deselecting Command line at
bottom on the ISPF Settings panel

v Set the primary keys to F13–24 by selecting 2 for Primary range on the Tailor
Function Key Definition Display panel

v Use the KEYLIST OFF command to turn keylists off
v Use the PSCOLOR command to change point-and-shoot fields to blue.
v Change the DFLTCOLR field in the PDF configuration table ISRCONFG to

disable action bars and or edit highlighting

ISPF Migration Considerations
When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

Note: If you are migrating to z/OS V1R2.0 from OS/390 V2R10.0, there are no
migration actions necessary. If you are migrating to z/OS V1R2.0 from a
prior release of OS/390, follow the migration actions for OS/390 V2R10.0.

ISPF Profiles
Major changes were made to the ISPF profiles for ISPF Version 4.2 and OS/390
Version 1 Release 1.0 ISPF. The profiles for ISPF Version 3 and the profiles for
OS/390 ISPF are not compatible. If you are moving back and forth between an
ISPF Version 3 system and OS/390 V1R1.0 or higher system, you must run with
separate profiles. Profiles for OS/390 V1R1.0 and higher are compatible with each
other.

Year 2000 Support for ISPF
ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is
available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?
v ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past

1999. Earlier versions always showed the first 2 characters of the year as 19.
v A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4–digit

year.
v An ISPF Configuration Table field enables PDF to interpret 2 character year

dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

v New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can

Summary of Changes xiii

continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

v Dialog variables ZLC4DATE and ZLM4DATE have been added.
– You can set them before making an LMMREP or LMMADD call. Do this to

specify a 4-character created or last modified date to set in the ISPF statistics.
– They are set by LMMFIND, LMMLIST and LMMDISP to the current value of

the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.
v For those services that accept both 4-character year dates and 2-character year

dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is
used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

v ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

v SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

v LMF has been removed from the ISPF product. For information about how to
convert from LMF to SCLM refer to the ISPF Planning and Customizing
manual.

xiv z/OS V1R2.0 ISPF SCLM Reference

|
|
|

What’s in the z/OS V1R2.0 ISPF library?

You can order the ISPF books using the numbers provided below.

z/OS V1R2.0 ISPF

Title Order Number

z/OS V1R2.0 ISPF Dialog Tag Language Guide and Reference SC34-4824-01

z/OS V1R2.0 ISPF Planning and Customizing GC34-4814-01

z/OS V1R2.0 ISPF User’s Guide Volume I SC34-4822-01

z/OS V1R2.0 ISPF User’s Guide Volume II SC34-4823-01

z/OS V1R2.0 ISPF Services Guide SC34-4819-01

z/OS V1R2.0 ISPF Dialog Developer’s Guide and Reference SC34-4821-01

z/OS V1R2.0 ISPF Reference Summary SC34-4816-01

z/OS V1R2.0 ISPF Edit and Edit Macros SC34-4820-01

z/OS V1R1.0 ISPF Library Management Facility SC34-4825-01

z/OS V1R2.0 ISPF Messages and Codes SC34-4815-01

z/OS V1R2.0 ISPF Software Configuration and Library Manager Project
Manager’s and Developer’s Guide

SC34-4817–01

z/OS V1R2.0 ISPF Software Configuration and Library Manager
Reference

SC34-4818-01

Entire library Bill of Forms SBOF-8570

© Copyright IBM Corp. 1990, 2001 xv

xvi z/OS V1R2.0 ISPF SCLM Reference

Elements and Features in z/OS

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in z/OS Version 1 Release 2.0. z/OS V1R2.0
is made up of elements and features that contain function at or beyond the release
level of the products listed in the following table. The table gives the name and
level of each product on which a z/OS element or feature is based, identifies the
z/OS name of the element or feature, and indicates whether it is part of the base
or optional. For more compatibility information about z/OS elements see z/OS
Planning for Installation, GC28-1726

Product Name and Level Name in z/OS Base or Optional

BookManager BUILD/MVS V1R3 BookManager BUILD optional

BookManager READ/MVS V1R3 BookManager READ base

MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base

MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional

MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional

IBM OS/390 C/C++ V1R2 C/C++ optional

DFSMSdfp V1R3 DFSMSdfp base

DFSMSdss DFSMSdss optional

DFSMShsm DFSMShsm optional

DFSMSrmm DFSMSrmm optional

DFSMS/MVS Network File System V1R3 DFSMS/MVS Network File System base

DFSORT R13 DFSORT optional

EREP MVS V3R5 EREP base

FFST/MVS V1R2 FFST/MVS base

GDDM/MVS V3R2
v GDDM-OS/2 LINK
v GDDM-PCLK

GDDM base

GDDM-PGF V2R1.3 GDDM-PGF optional

GDDM-REXX/MVS V3R2 GDDM-REXX optional

IBM High Level Assembler for MVS & VM
& VSE V1R2

High Level Assembler base

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional

ICKDSF R16 ICKDSF base

ISPF ISPF base

Language Environment for MVS & VM V1R5 Language Environment base

Language Environment V1R5 Data
Decryption

Language Environment Data Decryption optional

© Copyright IBM Corp. 1990, 2001 xvii

|
|
|
|
|
|
|
|

Product Name and Level Name in z/OS Base or Optional

MVS/ESA SP V5R2.2

BCP

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2 V5R2.0

JES3 V5R2.1

LANRES/MVS V1R3.1

IBM LAN Server for MVS V1R1

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services (OSF
DCE level 1.1)

OS/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE) V1R1

SOMobjects Runtime Library (RTL)

SOMobjects service classes

BCP or MVS

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2

JES3

LANRES

LAN Server

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services

OS/390 UNIX DCE Distributed File
Services (DFS)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE)

SOMobjects Runtime Library (RTL)

SOMobjects service classes

base

base

base

base

optional

base

base

base

base

base

base

base

optional

optional

base

base

Open Systems Adapter Support Facility
(OSA/SF) R1

Open Systems Adapter Support Facility
(OSA/SF)

base

MVS/ESA RMF V5R2 RMF optional

OS/390 Security Server Resource Access Control Facility (RACF)
v DCE Security Server
v OS/390 Firewall Technologies
v Lightweight Directory Access Protocol

(LDAP) Client and Server
v Open Cryptographic Enhanced Plug-ins

(OCEP)

optional

SDSF V1R6 SDSF optional

SMP/E SMP/E base

Softcopy Print base

SystemView for MVS Base SystemView for MVS Base base

IBM TCP/IP V3R1

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

TCP/IP

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

base

v optional

v optional

v optional

v optional

v optional

v optional

TIOC R1 TIOC base

Time Sharing Option Extensions (TSO/E)
V2R5

TSO/E base

xviii z/OS V1R2.0 ISPF SCLM Reference

Product Name and Level Name in z/OS Base or Optional

VisualLift for MVS V1R1.1 v VisualLift Run-Time Environment (RTE)
v VisualLift Application Development

Environment (ADE)

v base
v optional

VTAM V4R3 with the AnyNet feature VTAM base

3270 PC File Transfer Program V1R1.1 3270 PC File Transfer Program base

Elements and Features in z/OS xix

xx z/OS V1R2.0 ISPF SCLM Reference

Chapter 1. Migrating from Previous Versions of SCLM

When migrating from one release of ISPF to another, you must be sure to
reassemble and re-link all of your SCLM Project Definitions using the macros
provided with the new release. If you have modified any of the SCLM-provided
macros then you must re-integrate those changes with the new SCLM-provided
macros. Failure to do this results in unpredictable results during SCLM execution.

FLMCPYLB Statements Required for IOTYPE=A
In z/OS V1R2.0 ISPF and later, SCLM project definitions must have an FLMCPYLB
statement identifying a data set name for every FLMALLOC statement with
IOTYPE=A or MALLOC=Y. Project and language definitions with missing
statements (including sample languages and the sample project included in prior
releases) will receive an assembly error, which will be MNOTEs following the
FLMAEND statement. If this error is detected when a project definition is
assembled, you can correct it using one of the following:
v Add the missing FLMCPYLB statements with an appropriate data set name (or

specify NULLFILE)
v Change the IOTYPE on the FLMALLOC to an appropriate value for the

translator being used

Versioning Data Sets
In OS/390 V2R10 ISPF and later, you can version fixed and variable outputs as
well as editable data. If your project contains any record format U data, including
load modules, then you will need to review the FLMATVER macros in your project
definition. An asterisk (*) value for the TYPE (TYPE=*) on an FLMATVER macro
with versioning enabled (VERSION=YES) will cause an error message to be issued
when SCLM attempts to version the record format U data found in the project.
Under those circumstances, FLMATVER macros should be added to specify each
type to be versioned when the project contains record format U data. This change
is not necessary when auditing only is enabled (VERSION=NO).

Additional versioning data sets must be allocated for any new types that you
might now want to version.

Include Sets
In order to take advantage of the enhanced include search capabilities provided by
SCLM 4.2 or later, changes must be made to the project definition. Additional
function is available by updating your parsers to return include set information
about the includes found by the parsers.

Use of parsers that return include sets other than the default or COMPOOL
include set will result in an accounting record with a new format. Releases of
SCLM before ISPF Version 4 Release 2 will generate error messages and may not
be able to complete processing if they read an accounting record with this new
format. To avoid problems with the use of previous releases of SCLM, it is
recommended that only the default or COMPOOL include set be used until a
project no longer uses releases of SCLM before 4.2.

© Copyright IBM Corp. 1990, 2001 1

|

|
|
|
|
|
|
|

|
|

|
|

|

Year 2000 Support
With the release of OS/390 Version 1 Release 3.0, SCLM began supporting dates
beyond the year 2000. This has caused a change to the format of date fields stored
in the SCLM VSAM databases. After you have used this release with a system date
after December 31, 1999, you cannot go back to an earlier release of SCLM unless it
also has support for dates beyond the year 2000.

The internal date format used by SCLM has also changed. The length and format
of the $acct_info and $list_info date fields returned by SCLM services are
different. These fields are now 8 characters in length and have the format
YYYYMMDD (year, month, day). In addition, the 1–character alignment field in
the $acct_info structure is now three characters long. Any user-written programs
that use the SCLM service interface must be modified accordingly.

FLMALLOC Processing for IOTYPE S
After ISPF Version 4 Release 2, a change was made to SCLM FLMALLOC
processing for IOTYPE S. When the following criteria are met, SCLM allocates the
PDS member directly from the SCLM-controlled library, rather than copying it first
to a sequential data set. The criteria are:
1. There is only one input.
2. The input is from a SINC statement.
3. The KEYREF on the FLMALLOC statement is SINC.
4. You are NOT doing input list processing.

Any user defined translators must take into account that the DDNAME allocated
can be either a sequential data set or a PDS member.

Load Module Accounting Records and SSI Information
In ISPF Version 4.2 without APAR OW18306, when load modules without an SSI
area (load modules that were linked without the SETSSI option) were migrated
into SCLM, or when load modules were built using an architecture definition that
did not include the LOAD keyword, the dates and times in the accounting records
for the load modules were set to zeroes or random characters. Starting with
OS/390 V1R3.0, or with ISPF Version 4.2 with APAR OW18306, it is not necessary
to build a load module with the SETSSI option in order to migrate it into SCLM
and still have correct accounting and SSI information.

The SCLM MIGRATE operation generates the data for the SSI area and updates the
accounting record with the correct dates and times. Similarly, SCLM BUILD
generates the SSI information and sets the correct dates and times in the
accounting records for load modules that are generated without an LEC
architecture definition. If you are migrating from a system with ISPF Version 4.2
without APAR OW18306 or earlier release, take these actions:
v If you have previously migrated load modules into SCLM that did not have the

SSI information set, then you should migrate these modules into SCLM again.
Remigrating these members ensures that the SSI information is set and that the
accounting dates and times are correct.

v If you have previously generated load modules in SCLM without an LEC
architecture definition (meaning that the accounting record date and time fields
are zeroes or random characters) then these modules are rebuilt the first time a
build is performed after installing z/OS V1R2.0 ISPF. This rebuild is necessary to
ensure that the SSI and accounting record information for the load modules are

2 z/OS V1R2.0 ISPF SCLM Reference

in synch and have been updated with valid data. You might want to schedule
the first build of your projects with the affected load modules at a time that
minimizes the impact to your system.

Chapter 1. Migrating from Previous Versions of SCLM 3

4 z/OS V1R2.0 ISPF SCLM Reference

Chapter 2. SCLM Services

This chapter describes each of the SCLM services and the syntax conventions and
return codes for the services. It discusses how to call the services from your
terminal with interactive command processing, procedures, or programs. This
chapter also provides several brief examples of how to invoke the services.

Each service description includes an example of its use in the command procedure
format and the Pascal call format. Default settings for each service call are shown
in the command procedure format section for each service; the default values are
underscored. Call invocations do not have defaults because some value must be
specified for each parameter; a blank is identified for each parameter that will
translate a blank into a default value. See Chapter 3. Sample Programs Using
SCLM Services for an example of service invocations and declarations coded in
Pascal.

Invoking the SCLM Services
Invoke the SCLM services by a program function dialog through a call to
FLMCMD or FLMLNK, or by a command function dialog (CLIST or REXX)
through the ISPF interface.

Notation Conventions Used in this Chapter
This chapter uses the following notation conventions to describe the format of the
SCLM services:

Uppercase Uppercase commands or parameters must be spelled out as shown
(in either uppercase or lowercase).

Lowercase Lowercase parameters are variables; substitute your own values.

Underscore Underscored parameters are the system default.

Brackets ([]) Parameters in brackets are optional.

Braces ({ }) Braces show two or more parameters from which you must select
one.

OR (|) The OR (|) symbol separates two or more values (inside braces)
from which you must select one.

Single quotes (' ')
Single quotes show service names, keywords, and parameter
values in call invocation examples.

Command Invocation of the SCLM Services
The SCLM services can be invoked by using the FLMCMD command in a CLIST
or REXX command procedure or by issuing the FLMCMD command as a TSO
command.

You cannot invoke the following services using the FLMCMD command:
DBACCT
PARSE
END
START

© Copyright IBM Corp. 1990, 2001 5

FREE
STORE
INIT

The FLMCMD Interface
The general format for a command invocation is:
FLMCMD service_name,project_name,prj_def_name,parameter1,parameter2,...

The maximum length of the command invocation statement is 512 characters.

FLMCMD Parameter Conventions
service_name

Alphanumeric; up to 8 characters long.

project_name
Alphanumeric; up to 8 characters long.

prj_def_name
Alphanumeric; up to 8 characters long.

The remaining parameters are positional and depend on the service being
requested.

Lowercase parameters are optional. If a value is not specified for an optional
parameter, SCLM will use default values if they exist. All default values are
described within the parameter descriptions for each service.

If you omit a parameter, account for it by inserting a comma in its place. The
following example shows how you would omit parm2:
FLMCMD service_name,project_name,prj_def_name,parm1,,parm3

Do not insert blanks in the command format. Blanks entered before a parameter
will cause the value passed to the service to be incorrectly padded with leading
blanks.

Using Command Invocation Variables
If you invoke FLMCMD from a CLIST, you can use a CLIST variable anywhere
within a statement as the service name or as a parameter. A CLIST variable
consists of a name preceded by an ampersand (&). The CLIST processor replaces
each variable with its current value before processing the FLMCMD command.

Note: SCLM follows all rules pertaining to TSO CLISTs. For more information,
refer to TSO Extensions Command Language Reference (SC28-1881) and TSO
Extensions CLISTs (SC28-1876).

Using the FLMCMD File Format
Use the FILE format of FLMCMD to process multiple commands as a single
command invocation. You can enter the multiple commands either in a data set or
from your screen. The FILE format of the command invocation is:
FLMCMD FILE[,ddname]

The ddname is the data definition name allocated to the FLMCMD command data
set. The record length of the command data set cannot exceed 255 bytes. If you do
not specify the ddname, SCLM enters interactive mode and prompts you for
command lines. For more information, see “Interactive Command Processing” on
page 8.

Invoking the SCLM Services

6 z/OS V1R2.0 ISPF SCLM Reference

Performance Considerations
The START service loads the SCLM modules that can be processed into memory
and initializes the SCLM service environment. The INIT service loads the load
module of a project definition into memory. The FREE service closes all of the open
project databases. Each of these functions takes time. Therefore, to optimize the
SCLM services execution time, minimize the number of START, INIT, and FREE
service calls.

You can reduce the number of START, INIT, and FREE service calls by using the
FILE format of FLMCMD. As an SCLM service program, the FLMCMD command
processor must call the START service to begin a service session. It must also call
the INIT and FREE services for every unique project/prj_lib_def combination it
encounters. Therefore, ten separate invocations of the FLMCMD command
processor result in nine more calls to the START service and nine more calls to the
INIT and FREE services than one invocation of the FLMCMD command processor
that has all ten commands in a data set.

In addition, opening a command file takes time. In processing a single command,
the general format of FLMCMD processes faster than the FILE format of
FLMCMD.

SCLM opens the VSAM data sets for a project as they are needed; however each
open takes time. Projects can reduce the number of opens required by reducing the
number of data sets defined on the FLMCNTRL and FLMALTC macros in the
project.

Command Data Set Conventions
Command data sets use the following conventions:
v The sequence numbers of the command data set should be turned off.
v SCLM processes all commands in the command data set regardless of the

success or failure of previous commands.
v Each command must start on a new line.
v If a command takes more than one line, the continuation character should be the

first character of the continuation line.
If you enter spaces between the continuation character and the character that
follows, those spaces will be treated as part of the parameter.

v If a command line exceeds the maximum record length of the command data
set, continue the command by adding a plus sign (the continuation character) in
the first position of the continuation line. You can add any number of
continuation lines for any command.

v The maximum command length is 512 bytes. Note that if a command consists of
several command lines, SCLM deletes trailing blanks.

v An asterisk (*) indicates comment lines. Place it in the first non-blank character
of a command line. You can enter any number of comments within the
command data set, but you cannot add a comment line within a series of
command continuation lines.

The following example shows a command data set. The first command calls the
SCLM LOCK service; the second command calls the SCLM UNLOCK service.

Invoking the SCLM Services

Chapter 2. SCLM Services 7

The following example shows a CLIST command procedure that calls the FILE
format of FLMCMD.

Interactive Command Processing
To use interactive command processing, omit the ddname input parameter when
using the FILE format of FLMCMD. You then get a prompt for the Command
lines. SCLM processes your input exactly as if the commands were in a command
data set. During interactive command processing, you can enter comment lines but
you cannot enter continuation lines.

Note: You must perform interactive command processing, like all SCLM
processing, from an ISPF environment. Otherwise, the following error
message appears:
ISPS118 SERVICE NOT INVOKED. A VALID ISPF ENVIRONMENT DOES NOT EXIST.

To end interactive command processing, enter the QUIT command.

If you allocate the ddname to your screen and also specify it on the FILE format of
FLMCMD, you can get unpredictable results.

Figure 1 on page 9 shows a sample interactive command session.

*
* This is an example of a command data set.

* Note that comments do not have to start in column 1.
*
* The following command calls the SCLM LOCK service.
LOCK,PROJ1,,USER1,SOURCE,FLM01MD2,TESTAC,XXX#04,USERID
*
* The following command consists of four lines,
* and calls the SCLM UNLOCK service.
UNLOCK,PROJ1,,
+USER1,
+SOURCE,
+FLM01MD2,XXX#04

PROC 0
ALLOC DDNAME(SCLMIN) DA('USERID.FLMCMD.INPUT') SHR
FLMCMD FILE,SCLMIN
SET &FLMCMDCC =
FREE DDNAME(SCLMIN)
EXIT CODE(&FLMCMDCC)

END

Invoking the SCLM Services

8 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

|

|

For a description of the FLMCMD return codes, see “SCLM Service Return Codes”
on page 20.

Call Invocation of the SCLM Services
Programs can use the FLMLNK subroutine interface to call the SCLM services.
This chapter shows call statements in Pascal syntax and service names and
keywords as literals enclosed in single quotes (' ').

Note: None of the languages require you to use literals. You can specify
parameters as variables, as in the examples on the following pages.

You cannot call the following services using the FLMLNK subroutine interface:
DBUTIL
RPTARCH

Note: SCLM services can be issued from function modules that reside either below
or above the 16-megabyte line. The interface module FLM$LNK, alias
FLMLNK has the attributes RMODE(24) and AMODE(ANY). These
attributes allow both 24-bit and 31-bit addressing mode callers. Modules that
reside above the 16-megabyte line (RMODE(ANY)) and include FLM$LNK
in their load module can override the RMODE(24) attribute during link edit.
Data areas above the 16-megabyte line are also supported.

Standard register conventions are used. Registers 2-14 are preserved across the call.

The FLMLNK Subroutine Interface

FLMLNK Parameter Conventions

Note: If you are using FLMLNK, you must pad each parameter to the maximum
length. To do so, you must insert blank spaces so that each parameter takes
up exactly the maximum amount of space allotted for it.

Menu List Mode Functions Utilities Help
-- ->

ISPF Command Shell
Enter TSO or Workstation commands below:

===> FLMCMD FILE __

Place cursor on choice and press enter to Retrieve command

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 1. Sample Interactive Command Session (ISRTSO)

Invoking the SCLM Services

Chapter 2. SCLM Services 9

|
|

Programs in the FLMLNK subroutine interface use the following conventions:
v The service_name parameter is positional and required. All other parameters

must appear in the order described for each service. Parameter positions on the
CALL statement must specify a value up to the last parameter coded. Some
services allow for CALLs where the parameter list ends before the last one in the
service description, thus taking the default specification for those parameters
(see individual service descriptions for details).

v SCLM uses the maximum parameter length when referencing and updating
parameter values. Parameter values with fewer characters than the maximum
must be padded with blanks for the remainder of the field. Parameters that are
not padded with blanks cause unpredictable results. Be sure that all padding is
done by inserting trailing blanks. Padding a parameter with leading blanks
causes an incorrect value to be passed to the service.

v To omit a parameter, insert a blank enclosed in single quotes (' ') in its place.

Note: Single quotes show service names and keywords in call invocation
examples.

v You must indicate the last parameter in the calling sequence with a '1' as the
high-order bit in the last entry of the address list. PL/I, COBOL, Pascal, and
FORTRAN call statements automatically generate this high-order bit. In
assembler call statements, you must use the VL keyword.

FORTRAN, Pascal, and C
For FORTRAN, Pascal, and C, the general call format for invoking SCLM services
from functions by using FLMLNK is:
lastrc := FLMLNK(service_name,parameter1,parameter2,...);

The parameters for the FORTRAN, Pascal, or C invocation are the same as those
shown for the call invocation.

SCLM returns the return code from the specified SCLM service in the FORTRAN,
Pascal, or C integer variable specified on the invocation. In these examples, the
variable LASTRC is used.

FORTRAN Example: For functions written in FORTRAN, pass arguments as
FORTRAN variables or literals.
INTEGER LASTRC*4
CHARACTER SERVIS*8,SCLM_ID*8,GROUP*8
DATA SERVIS/'DELETE '/
DATA SCLM_ID/'SCLM0001'/
DATA GROUP/'USER1 '/

.

.

LASTRC=FLMLNK(SERVIS,SCLM_ID,GROUP,...)

For FORTRAN service requests, initialize parameter variables by using literals in
assignment statements. You must use previously-defined constants in assignment
statements.
CHARACTER DELET*8,SERVIS*8
DATA DELET/'DELETE '/

.

.

SERVIS=DELET

Pascal Example:

Invoking the SCLM Services

10 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|

CONST
SERVICE = 'DELETE ';
SCLM_ID = 'SCLM0001';
GROUP = 'USER1 ';
.
.

LASTRC := FLMLNK(SERVICE,SCLM_ID,GROUP,...);

For service calls in Pascal, initialize parameter variables by using literals in
assignment statements:
SERVICE:='DELETE ';

C Example: In C programs, include the following declare statements and compiler
directives:

#pragma linkage(flmlnk,OS);
extern int flmlnk();

Example
int retcode;
char *SERVICE, *SCLMID,*GROUP, ...;
SERVICE = "DELETE ";
SCLMID = "SCLM0001";
GROUP = "USER1 ";
.
.

lastrc = flmlnk(SERVICE,SCLMID,GROUP,...);

PL/I
In PL/I programs, include the following declare statements:
DECLARE FLMLNK /* NAME OF ENTRY POINT */

ENTRY
EXTERNAL /* EXTERNAL ROUTINE */
OPTIONS(/* NEEDED OPTIONS */
ASM, /* DO NOT USE PL/I DOPE VECTORS */
INTER, /* INTERRUPTS */
RETCODE); /* EXPECT A RETURN CODE */

PL/I Example::
DECLARE SERVICE CHAR(8) INIT('DELETE '),

SCLM_ID CHAR(8) INIT('SCLM0001'),
GROUP CHAR(8) INIT('USER1 '),
.
.

CALL FLMLNK(SERVICE,SCLM_ID,GROUP,...);

For service calls in PL/I, initialize parameter variables by using literals in
assignment statements:
SERVICE='DELETE ';

COBOL
COBOL does not allow literals within a call statement. Therefore, SCLM does not
require the use of literals. You can specify all parameters as variables, as in the
following example:

COBOL Example:
WORKING-STORAGE TYPE.

77 SERVIS PICTURE X(8) VALUE 'DELETE '.
77 SCLMID PICTURE X(8) VALUE 'SCLM0001'.

Invoking the SCLM Services

Chapter 2. SCLM Services 11

77 GROUP PICTURE X(8) VALUE 'USER1 '.
.
.

PROCEDURE DIVISION
CALL 'FLMLNK' USING SERVIS SCLMID GROUP

For service calls in COBOL, initialize parameter variables by using literals in
assignment statements:
MOVE 'DELETE ' TO SERVIS.

Types of Parameters
The various types of parameters discussed in this section include DDNAME,
Character, and Pointer parameters.

DDNAME Parameters
SCLM services send output to data sets associated with the ddnames you provide
in the parameters passed to the service. You should allocate ddnames with the
attributes specified in the parameter descriptions. However, if you use different
attributes to allocate the ddnames, SCLM accesses the data set using the attributes
specified, but the format of the resulting file might not be usable.

As part of the processing for several of its services, SCLM updates partitioned data
sets. For instance, the BUILD service copies compiler-produced object modules into
an SCLM-controlled object partitioned data set. To eliminate the risk of corrupting
a partitioned data set, allocate the data set with DISP=OLD.

Character Parameters
Left-justify all character input parameters (character strings) to the SCLM services.
Left-justify all character output parameters (character strings) from the SCLM
services. Make the calling program buffer the length specified in the service
descriptions. Failure to provide a buffer of the proper size causes unpredictable
results.

Selection Parameters
You can use patterns to specify a variety of acceptable values for the accounting
information fields. A pattern consists of alphanumeric characters and three special
characters: an asterisk (*), a logical NOT symbol (¬), and an equal sign (=).

Use an asterisk to match any string of characters including the null string. You can
use it more than once.

Use the logical NOT symbol (¬) to negate the result of a match with the pattern.
You can specify it only once. The logical NOT symbol is removed from the pattern
before a match is attempted. Therefore, the position of the logical NOT symbol
within the pattern is not significant.

Use an equal sign (=) to indicate all groups that are at the same layer in the
hierarchy as the group you specify. An equal sign can only be specified once in the
pattern.

You should use the equal sign only in the group field, and you should not use the
equal sign in conjunction with other wildcard characters. If you use the equal sign,
you must specify a valid group name. The name specified is taken literally.

Note: Do not use an equal sign (=) as the first character in a pattern because it is a
special character in ISPF.

Invoking the SCLM Services

12 z/OS V1R2.0 ISPF SCLM Reference

Use the patterns shown in Table 1 to select accounting information.

Table 1. Pattern Examples

Pattern Match

AB*Z ABZ,ABCZ,ABCZYZ,ABCABZ

¬AB*Z ABC,XABZ,ABZX

*AB*Z ABZ,XABZ,ABCABZ,ABCZ,ABCZYZ

DEV1= DEV1,DEV2

STAGE1= STAGE1,STAGE2

Note: See ISPF Software Configuration and Library Manager (SCLM) Developer’s and Project
Manager’s Guide for an illustration of the hierarchy represented in the last two rows.

Pointer Parameters
All pointer parameters to the SCLM services provide a fullword address to a
predefined array or record structure.

The SCLM services use four pointer parameters:
$msg_array (message array)
$acct_info (accounting information)
$stats_info (statistical information)
$list_info (list information array)

For Pascal declarations of the services program invocations, see Chapter 3. Sample
Programs Using SCLM Services.

Note: When creating programs that use SCLM services, the developer must be
careful to manipulate the memory for pointer parameters correctly.

Input Parameters
The program calling the SCLM service must allocate the memory for
the pointer parameter (one word) and the memory for the structure.

Output Parameters
The program calling the SCLM service must allocate the memory for
only the pointer parameter (one word). If the information in the
output structure will be referenced later in the program then the
information in the structure must be copied to the program’s local
storage before the next call to an SCLM service. SCLM allocates and
deallocates the memory where the output structure is stored.

For example, if you want to pass the $list_info array from the PARSE service to the
STORE service, you must first copy the $list_info array to a local memory buffer.
Then you must pass the local buffer pointer to the STORE service.

For examples of copying the $list_info array and the $stats_info record, see
Chapter 3. Sample Programs Using SCLM Services.

Pointer Parameter Descriptions
This section describes each of the four pointer parameters:

$msg_array: A pointer to an array of messages SCLM services produce. Each
record in the message array is 80 bytes. An END record denotes the end of the
message array. Figure 2 on page 14 shows the contents of a message array with one
message consisting of two message lines.

Invoking the SCLM Services

Chapter 2. SCLM Services 13

$acct_info: A pointer to a record containing the static portion of an accounting
record. The following describes the format of the record fields in the order in
which they appear. For additional information on record field contents, refer to the
ISPF Software Configuration and Library Manager (SCLM) Developer’s and Project
Manager’s Guide.

The following fields contain data common to all members:

Field Contents

acct_group 8 characters

acct_type 8 characters

acct_member 8 characters

SCLM_version 2 characters ('60 or 70')

accounting_status 1 character:
E Editable
N Noneditable
L Lockout
I Initial

change_date 8 characters (YYYYMMDD format)

change_time 6 characters (HHMMSS format)

change_group 8 characters

change_userid 8 characters

------ 3 characters (space for alignment)

member_version Fullword integer

language 8 characters

authorization_code 8 characters

authorization_code_change 8 characters

access_key 16 characters

creation_date 8 characters (YYYYMMDD format)

creation_time 6 characters (HHMMSS format)

map_date 8 characters (YYYYMMDD format)

map_time 6 characters (HHMMSS format)

predecessor_date 8 characters (YYYYMMDD format)

predecessor_time 6 characters (HHMMSS format)

promote_date 8 characters (YYYYMMDD format)

promote_time 6 characters (HHMMSS format)

promote_userid 8 characters

db_qual 8 characters

The following fields are blank unless the accounting_status is N. Each field is 8
characters.

Record 1: FLM80500 - ACCESS KEY INCORRECT, ACCESS KEY: WRONG_KEY
Record 2: GROUP: USER1, TYPE: SOURCE, MEMBER: FLM01MD1
Record 3: END

Figure 2. $msg_array Contents

Invoking the SCLM Services

14 z/OS V1R2.0 ISPF SCLM Reference

v translator_version
v map_name
v map_type
v language_version

The following fields contain statistical data for a member. Each field is a fullword
integer.
v total_lines
v comment_lines
v non_comment_lines
v blank_lines
v total_stmts
v comment_stmts
v non_comment_stmts
v number_of_user_entries
v number_of_includes
v reserved_field
v number_of_changecodes
v number_of_cus

The fields preceded by an asterisk refer to statistics that the SCLM-supplied
parsers do not collect.

$stats_info: A pointer to a record containing a member’s statistical information.
Each of the fields is a fullword integer. For a description of the record field
contents, see ISPF Software Configuration and Library Manager (SCLM) Developer’s and
Project Manager’s Guide The following describes the format of the record fields.
v total_lines
v comment_lines
v non_comment_lines
v blank_lines
v * prolog_lines
v total_stmts
v comment_stmts
v * control_stmts
v * assignment_stmts
v non_comment_stmts

The fields preceded by an asterisk refer to statistics that the SCLM-supplied
parsers do not collect.

$list_info: A pointer to an array of records containing the dynamic portion of an
SCLM accounting record. The array contains records detailing a member’s include,
change code and user entry information. Each record in the array is 228 bytes.

Some of the SCLM services place restrictions on the data that you can specify with
this parameter. See the description of each service to determine if it restricts the
$list_info parameter data.

The records in the array contain two fields. The first field is 4 characters and
indicates the record type. Valid record type values are:

Record Type Description

END Indicates the end of the array

INCL Indicates an include

Invoking the SCLM Services

Chapter 2. SCLM Services 15

Record Type Description

INCS Indicates an include with an include-set name

COMP Indicates the name of an include from the COMPOOL include set

CODE Indicates a change code

USER Indicates user data

EXTD Indicates external dependencies.

The second field varies depending on the record type. For the following
discussion, “member” refers to the member whose array contains dynamic
accounting record information.

The following table describes the data in the second field for each record type:

Record Type Description

END No data

INCL Member name (8 characters) upon which the “member” has an include
dependency.

INCS A record containing two parts. The first 8 bytes contain the include
name; the next 8 bytes contain the include-set name.

Include sets are used when different types are to be searched for the
includes. For example, an include set of INCLUDE could be used for
includes of source code and an include set of SQL could be used for
SQL declarations. The include-set name returned by a parser must match
the name of an include set in the language definition that included that
parser. Include sets are defined using the FLMINCLS macro.

Because the include-set name is then associated with a ddname
allocation for the translator, there are usually no more include-set names
returned by the parser than there are input ddnames supported by the
translators in the language definition.

Use the INCS record to record dependencies when an include-set name
is to be associated with the dependency. Use the INCL record to record a
dependency when the dependency is to be associated with the default
include set. Do not use both INCL and INCS records for the same
dependency name unless two different include dependencies are to be
recorded for the same member name.

An INCS record with blanks for the include-set name is the same as an
INCL record for that dependency.

COMP Indicates an include in the COMPOOL include-set $list_info entries
returned by SCLM will always use the INCS record type to return
information for includes in the COMPOOL include set. The preferred
method of recording dependencies in the COMPOOL include set is to
use INCS records. This record type is available for compatibility
purposes only.

CODE A record detailing a change code associated with the “member”. The
total record length is 22 bytes. The record contains a change code (8
characters), a change code date stamp (8 characters, YYYYMMDD
format), and a change code time stamp (6 characters, HHMMSS format).
The change code value will be translated to upper case before it is
passed to the SCLM service.

USER User data (128 characters) associated with the “member”.

Invoking the SCLM Services

16 z/OS V1R2.0 ISPF SCLM Reference

Record Type Description

EXTD A record that describes an external dependency for an SCLM-controlled
member. This record contains the following information:

group Name of the SCLM group that is equivalent to the
group where the external dependency resides (8
characters)

type Name of type (8 characters)

name Name of the external dependency (43 characters)

date/time Date and time in SCLM format when the external
dependency was last changed (14 characters: date in
format YYYYMMDD, time in format HHMMSS).

Note:

The SAVE service restricts the $list_info record type to CODE and END.
SCLM deletes all existing user data records if you use the SAVE service.

Figure 3 shows the contents of a list information array. Two change codes (PR1234
on 12/16/93 at 12:01:33 and CR000032 on 1/4/94 at 00:53:16) and a user entry
indicating a customized member are associated with the “member”.

ISPF Variables
Some SCLM services use ISPF variables to communicate information with the
caller. All variables contain character data. Integer data is converted to character
format. The following table lists the ISPF variables which are used:

Variable
Max
Size Services Description

zlockdsn 44 LOCK Data set name for the member at the lock group

zsaackey 16 VERINFO,
ACCTINFO

Access key (see lock and unlock services)

zsaastmt 8 VERINFO,
ACCTINFO

Parser statistic - number of assignment statements

zsaauth 8 VERINFO,
ACCTINFO

Authorization code

zsaauthc 8 VERINFO,
ACCTINFO

Authorization code change

zsabdate 8 VERINFO,
ACCTINFO

Baseline (predecessor) date

zsabdat4 10 VERINFO,
ACCTINFO

Baseline (predecessor) date with a 4-character year

zsabline 8 VERINFO,
ACCTINFO

Parser statistic - number of blank lines

Record 1: CODEPR1234 19931216120133
Record 2: CODECR00003219940104005316
Record 3: USERTEST MEMBER - CUSTOMIZED
Record 4: END

Figure 3. $list_info Contents

Invoking the SCLM Services

Chapter 2. SCLM Services 17

|
|
|
|

Variable
Max
Size Services Description

zsabtime 8 VERINFO,
ACCTINFO

Baseline (predecessor) time

zsacccnt 8 VERINFO,
ACCTINFO

Number of change codes for the member

zsacdate 8 VERINFO,
ACCTINFO

SCLM creation date

zsacdat4 10 VERINFO,
ACCTINFO

SCLM creation date with 4-character year

zsacline 8 VERINFO,
ACCTINFO

Parser statistic - number of comment lines

zsacstmt 8 VERINFO,
ACCTINFO

Parser statistic - number of comment statements

zsactime 8 VERINFO,
ACCTINFO

SCLM creation time

zsacucnt 8 VERINFO,
ACCTINFO

Number of ADA Compilation units

zsadsn 44 VERINFO,
ACCTINFO

Physical data set name for the group and type

zsagrp 8 ACCTINFO SCLM group name

zsaincnt 8 VERINFO,
ACCTINFO

Number of includes for the member

zsalang 8 VERINFO,
ACCTINFO

SCLM language name for the member

zsaldate 8 ACCTINFO Date the member was last changed

zsaldat4 10 ACCTINFO Date, with a 4-character year, that the member was
last changed

zsalgrp 8 VERINFO,
ACCTINFO

Group where the member was last changed

zsalstmt 8 VERINFO,
ACCTINFO

Parser statistic - number of control statements

zsaltime 8 ACCTINFO Time the member was last changed

zsaluser 8 VERINFO,
ACCTINFO

Userid that last changed the member

zsambr 8 ACCTINFO SCLM member name

zsamdate 8 VERINFO,
ACCTINFO

Date of the build map that generated the member
or if the member is not generated this is the last
change date

zsamdate 10 VERINFO,
ACCTINFO

Date, with a 4-character year, of the build map that
generated the member or if the member is not
generated this is the last change date

zsammbr 8 VERINFO,
ACCTINFO

Name of the build map that generated the member
or blank if not a generated member

zsamtime 8 VERINFO,
ACCTINFO

Time of the build map that generated the member
or if the member is not generated this is the last
change time

zsamtver 8 VERINFO,
ACCTINFO

Version of the translator that generated the
member

Invoking the SCLM Services

18 z/OS V1R2.0 ISPF SCLM Reference

Variable
Max
Size Services Description

zsamtype 8 VERINFO,
ACCTINFO

Type of the build map that generated the member
or blank if not a generated member

zsanline 8 VERINFO,
ACCTINFO

Parser statistic - number of non-comment lines

zsanstmt 8 VERINFO,
ACCTINFO

Parser statistic - number of non-comment
statements

zsapdate 8 VERINFO,
ACCTINFO

Date the member was promoted from a lower
group or zeros if no promote was done to get the
member into the current group

zsapdat4 10 VERINFO,
ACCTINFO

Date, with a 4-character year, the member was
promoted from a lower group or zeros if no
promote was done to get the member into the
current group

zsapline 8 VERINFO,
ACCTINFO

Parser statistic - number of prolog lines

zsaptime 8 VERINFO,
ACCTINFO

Time the member was promoted from a lower
group or zeros if no promote was done to get the
member into the current group

zsapuser 8 VERINFO,
ACCTINFO

Userid last promoting the member from a lower
group or blank if no promote was done to get the
member into the current group

zsastat 8 VERINFO,
ACCTINFO

Status of the accounting record. Possible values
are: EDITABLE, NON-EDIT, LOCKOUT, INITIAL,
and ERROR

zsatline 8 VERINFO,
ACCTINFO

Parser statistic - total number of lines

zsatstmt 8 VERINFO,
ACCTINFO

Parser statistic - total number of statements

zsatype 8 ACCTINFO SCLM Type

zsauecnt 8 VERINFO,
ACCTINFO

Number of user entries for the member

zsaver 8 VERINFO,
ACCTINFO

Version number of the member

zsctime 8 VERINFO,
ACCTINFO

Last time a change code was assigned to a
member

zsdname 110 VERINFO,
ACCTINFO

Name of an ADA compilation unit

zsdtype 8 VERINFO,
ACCTINFO

Type of an ADA compilation unit. Possible values
are: SPEC, BODY, and XREF

zsiiset 8 VERINFO,
ACCTINFO

Include-set name for an include

zsimbr 8 VERINFO,
ACCTINFO

An include for a member

zsuentry 128 VERINFO,
ACCTINFO

Data from a user entry

zsunum 8 VERINFO,
ACCTINFO

Number of the user entry

Invoking the SCLM Services

Chapter 2. SCLM Services 19

Variable
Max
Size Services Description

zsvactn 8 VERINFO Action generating the audit record. Possible values
are: PUT and PURGE

zsvambr 8 VERINFO SCLM member name for action taken

zsvcfmt 8 VERINFO Current format of the version member. Possible
values are: DELTA, FULL, and AUDIT

zsvdate 8 VERINFO Date the audit record was generated.

zsvdat4 10 VERINFO Date, with a 4-character year, that the audit record
was generated.

zsvfmsg 8 VERINFO SCLM message id if versioning of the member
failed.

zsvgrp 8 VERINFO SCLM group name for action taken

zsvldate 8 VERINFO Last change date of the member

zsvldat4 10 VERINFO Last change date, with 4-character year, of the
member

zsvltime 8 VERINFO Last change time of the member

zsvmbr 8 VERINFO Member in the versioning pds containing the
version of the member or blank if only auditing
was performed

zsvpds 44 VERINFO The versioning pds containing the version of the
member

zsvreslt 8 VERINFO Result of the versioning action. Possible values are:
ATTEMPT, COMPLETE, and FAILED

zsvrfmt 8 VERINFO Requested format of the version. Possible values
are: DELTA, FULL, and AUDIT

zsvsdate 8 VERINFO SCLM change date for the member for which a
version was requested.

zsvsdat4 10 VERINFO SCLM change date, with 4-character year, for the
member for which a version was requested.

zsvserv 8 VERINFO SCLM service generating the audit record. Possible
values are: BLDDEL, BUILD, DELETE, FREE,
IMPORT, LOCK, EXT LIB, PROMOTE, STORE,
UPTATHCD, UPTCHGCD, UNLOCK, and
UPTUENTY

zsvstime 8 VERINFO SCLM change time of the member.

zsvtime 11 VERINFO Time the audit record was generated.

zsvtype 8 VERINFO SCLM type for action taken

zsvuser 8 VERINFO Userid performing the service which generated the
audit record.

SCLM Service Return Codes
Each service returns a numeric code, called a return code, indicating the results of
the operation. The following are possible return codes:

0 Indicates successful completion. SCLM may generate messages.

2 Indicates successful completion. No action taken.

4 Indicates a warning condition. SCLM may generate messages.

Invoking the SCLM Services

20 z/OS V1R2.0 ISPF SCLM Reference

8 Indicates an error condition. SCLM generates messages detailing the error.

12 Indicates a severe error condition. SCLM generates messages detailing the
error.

Return codes and their meanings vary for each service and are listed with each
service description. In addition to these return codes, the FLMCMD and FLMLNK
interfaces each generate return codes.

For command invocation, SCLM returns the code in the CLIST variable. For call
invocation, SCLM returns the code in registers 15 and 0. When using the FILE
format of FLMCMD command invocation, SCLM sets the return code to the
maximum return code encountered while processing the command data set.

Programs coded in Pascal or FORTRAN can examine the return code by using an
integer variable, such as lastrc, in the following example:
lastrc := FLMLNK(service_name,parameter1,parameter2,...);

Programs coded in PL/I can examine the return code by using PLIRETV, a built-in
function. You need the following declare statements:
DECLARE FLMLNK EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DECLARE PLIRETV BUILTIN;

Programs coded in COBOL can examine the return code by using RETURN-CODE,
a built-in variable.

FLMCMD Command Processor Return Codes
Possible return codes are:

12 Maximum application ID limit exceeded. FLMCMD has attempted to
initialize an SCLM session, but the maximum number of SCLM sessions
have already been started. End one or more of the active sessions and
reissue the command.

16 The SCLM table verification failed. The version of the SCLM project
definition macros used to compile the specified project definition does not
match the version of SCLM being used. Verify that the project definition
specified in the line command is correct. If the project definition was
specified correctly, contact the project administrator.

20 The NLS table verification failed. The version of the NLS table did not
match the version of SCLM being used. Contact the project administrator.

24 Unable to load the SCLM table (FLMTABLE). Contact the project
administrator.

28 Unable to load the NLS table or the SCLM I/O load module (FLMIO24).
Contact the project administrator.

FLMLNK Call Processor Return Codes
Possible return codes are:

20 Severe error condition. SCLM does not produce messsges because the
SCLM ID is not valid.

24 Severe error condition. SCLM does not produce messsges because the

Invoking the SCLM Services

Chapter 2. SCLM Services 21

||
|

|

|

||
|
|
|

||
|
|
|
|

||
|

||
|

||
|

|
|

|

||
|

||

SCLM services have not been initialized. See “START—Generate an
Application ID for a Services Session” on page 87 for information about
initializing an SCLM services session.

32 Severe error condition. An invalid parameter list was passed to the
requested service.

34 Severe error condition. An invalid service was requested.

36 Severe error condition. The version of the FLMLNK subroutine does not
match the version of the SCLM services module.

Return codes and their meanings vary for each service and are listed with each
service description.

SCLM Service Messages
SCLM services issue two types of messages:

FLMMSGS
SCLM uses the ddname FLMMSGS for special services messages such as a
completion status or return code message, and for error messages
associated with the specified service parameters. These messages are
usually routed to the default output device, such as your terminal. In order
to suppress or re-route these messages, allocate the FLMMSGS ddname
before invoking the SCLM service.

Service Specific Messages
Many of the services have parameters for handling messages. There are
three types of message parameters:

msg_line
Services that only write one message have a msg_line parameter.
Define a program variable that is 80 characters to hold the contents
of this message line. This parameter only applies to services called
through the FLMLNK interface.

$msg_array
Some services that can produce more than one message have a
$msg_array parameter. Define program storage as described in
“DDNAME Parameters” on page 12 to store the service messages.
The $msg_array is available only from services invoked through
the FLMLNK interface.

ddname
Many of the services offer a ddname parameter which you can
allocate to a file that stores the messages. Information for allocating
the ddname is included in the description for each applicable
service. If you leave the ddname parameter blank, the messages go
to the default output device, for example, your terminal.

Invoking the SCLM Services

22 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

||
|

||

||
|

|
|

SCLM Service Descriptions
This section contains information about the services available for SCLM.

Table 2. Services

Service Description Page

ACCTINFO Retrieve accounting information “ACCTINFO—Retrieve
Accounting
Information” on
page 25

AUTHCODE Retrieve or set authorization code for
selected members

“AUTHCODE—Retrieve
or Set Authorization
Code for Selected
Members” on page 28

BUILD Build a member “BUILD—Build a
Member” on page 32

DBACCT Retrieve accounting records for a member “DBACCT—Retrieve
Accounting Records
for a Member” on
page 36

DBUTIL Generate a tailored output data set and
report

“DBUTIL—Generate a
Tailored Output Data
Set and Report” on
page 38

DELETE Delete database components “DELETE—Delete
Database
Components” on
page 42

DELGROUP Delete group database components “DELGROUP—Delete
Group Database
Components” on
page 44

DSALLOC Allocate data sets for group or type “DSALLOC—Allocate
Data Sets for
Group/Type” on
page 48

EDIT Edit a member of a controlled library “EDIT— Edit a
Member of a
Controlled Library”
on page 51

END End an SCLM services session “END— End an
SCLM Services
Session” on page 54

EXPORT Extract SCLM accounting information for a
group

“EXPORT—Extract
SCLM Accounting
Information for a
Group” on page 55

FREE Free and SCLM ID “FREE—Free an
SCLM ID” on page 58

IMPORT Import SCLM accounting information to
current project

“IMPORT—Import
SCLM Accounting
Information to
Current Project” on
page 59

SCLM Service Descriptions

Chapter 2. SCLM Services 23

Table 2. Services (continued)

Service Description Page

INIT Generate an SCLM ID “INIT—Generate an
SCLM ID” on page 62

LOCK Lock a member or assign an access key “LOCK—Lock a
Member or Assign an
Access Key” on
page 63

MIGRATE Create accounting for selected members “MIGRATE—Create
Accounting for
Selected Members” on
page 68

NEXTGRP Returns the name of the next group in a
given hierarchy.

“NEXTGRP—
Retrieve Next Group
in SCLM Hierarchy”
on page 71

PARSE Parse a member for statistical and
dependency information

“PARSE—Parse a
Member for Statistical
and Dependency
Information” on
page 73

PROMOTE Promote a member from one library to
another

“PROMOTE—Promote
a Member from One
Library to Another”
on page 76

RPTARCH Generate an SCLM architecture report “RPTARCH—Generate
an SCLM Architecture
Report” on page 80

SAVE Lock, parse, and store a member “SAVE—Lock, Parse,
and Store a Member”
on page 83

START Generate an application ID for a services
session

“START—Generate an
Application ID for a
Services Session” on
page 87

STORE Store member information in an accounting
record

“STORE—Store
Member Information
in an Accounting
Record” on page 89

UNLOCK Unlock a member in a development library “UNLOCK—Unlock a
Member in a
Development Library”
on page 92

VERDEL Delete version/audit information “VERDEL—Delete
Version and Audit
Information” on
page 95

VERINFO Retrieve version/audit information “VERINFO—Retrieve
Version and Audit
Information” on
page 97

VERRECOV Recover a version “VERRECOV—Recover
a Version” on
page 100

SCLM Service Descriptions

24 z/OS V1R2.0 ISPF SCLM Reference

Each service description consists of the following information:

Description A description of the function and operation of the service. This
description also refers to other services that you can use with this
service.

Each service description shows the formats for:
v Command invocation, for use in a CLIST or REXX command

procedure or as a TSO command
v Call invocation from a program module.

Format The syntax that you use to code the service, showing both
command invocation and call invocation.

Because this chapter shows command and call invocation formats
in Pascal, a semicolon (;) ends statements. This is a Pascal
convention, but you should use the syntax appropriate for your
programming language.

Parameters A description of any required or optional keywords or parameters.
For additional information on parameters, refer to ISPF Software
Configuration and Library Manager (SCLM) Developer’s and Project
Manager’s Guide.

Return Codes A description of the codes the service returns. For all services, a
return code of 12 or higher implies a severe error. This error is
usually a syntax error, but it can be any severe error detected when
using the services.

Examples Sample usage of the service.

FLMLNK requires that the parameters be padded with blanks if the value specified
is not as long as the maximum length allowed. Therefore, the examples of call
invocations are padded with blanks to the maximum length allowed for each
parameter.

ACCTINFO—Retrieve Accounting Information
The ACCTINFO service retrieves the information about an SCLM controlled
member into ISPF variables and tables. The information is retrieved from the
accounting file defined in the project definition for the group specified to the
service. The service can search up the hierarchy for the member, search a group for
the next matching member, or retrieve the information for a specific member. See
“ISPF Variables” on page 17 for a list of the variables updated by this service.

Command Invocation Format
FLMCMD ACCTINFO,project

,[prj_def]
,group
,type
,member
,[user_info_table]
,[include_table]
,[change_code_table]
,[ada_cu_table]
,[SEARCH│FORWARD│MATCH]
,[dd_msgs]

SCLM Service Descriptions

Chapter 2. SCLM Services 25

Call Invocation Format
lastrc := FLMLNK('ACCTINFO ',sclm_id,

,group
,type
,member
,user_info_table
,include_table
,change_code_table
,ada_cu_table
,SEARCH│FORWARD│MATCH
,$msg_array);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name. It defaults to the project name. The maximum
parameter length is 8 characters. This parameter is used for FLMCMD
only.

sclm_id
An SCLM ID associated with a given project and project definition. The
INIT service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group The group associated with the accounting record. The maximum parameter
length is 8 characters.

type The type associated with the accounting record. The maximum parameter
length is 8 characters.

member
The member under SCLM control. The maximum parameter length is 8
characters.

user_info_table
The name of the ISPF table to contain the user entries from the account
record. The table must be open prior to calling the ACCTINFO service. A
TBADD will be performed for each user entry in the account record. The
maximum parameter length is 8 characters. The following ISPF variables
must be used in the table definition in order to have their value stored in
the table:
v ZSUNUM - the user entry number
v ZSUENTRY - the user entry data

include_table
The name of the ISPF table to contain the includes from the account record.
The table must be open prior to calling the ACCTINFO service. A TBADD
will be performed for each include in the account record. The maximum
parameter length is 8 characters. The following ISPF variables must be
used in the table definition in order to have their value stored in the table:
v ZSIMBR - the include member name
v ZSIISET - the include set name

change_code_table
The name of the ISPF table to contain the change codes from the account
record. The table must be open prior to calling the ACCTINFO service. A
TBADD will be performed for each change code in the account record. The

ACCTINFO Service

26 z/OS V1R2.0 ISPF SCLM Reference

maximum parameter length is 8 characters. The following ISPF variables
must be used in the table definition in order to have their value stored in
the table:
v ZSCCODE - the change code
v ZSCDATE - the change code date
v ZSCDAT4 - the change code date in 4–character date format
v ZSCTIME - the change code time

ada_cu_table
The name of the ISPF table to contain the ADA compilation units from the
account record. The table must be open prior to calling the ACCTINFO
service. A TBADD will be performed for each ADA compilation unit in the
account record. The maximum parameter length is 8 characters. The
following ISPF variables must be used in the table definition in order to
have their value stored in the table:
v ZSDNAME- the ADA compiliation unit name
v ZSDTYPE - the ADA compilation unit type

SEARCH│FORWARD│MATCH
SEARCH indicates that SCLM is to look up the hierarchy to find the
accounting record if it does not exist at the specified group. This is the
default.

MATCH indicates to check only the specified group for the accounting
record.

FORWARD indicates that if the member and type names do not exactly
match an accounting record the information from the next accounting
record in the group is to be returned.

To retrieve all of the accounting records within a group use FORWARD
and start with the member and type names set to all blanks. If an
accounting record is found increment the last character of the member
name before calling the ACCTINFO service again. Repeat this process until
the service indicates that no record was found.

The maximum parameter length is 8 characters.

dd_msgs
The ddname indicating the destination of the messages generated by the
ACCTINFO service. If you specify a blank ddname, SCLM routes the
ACCTINFO messages to the default output device, such as your terminal.
Otherwise, before you call the ACCTINFO service, you must allocate the
ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

$msg_array
An output parameter pointing to the message array. See “Pointer
Parameters” on page 13 for more information on $msg_array. This
parameter is used for FLMLNK only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

ACCTINFO Service

Chapter 2. SCLM Services 27

|

|
|

Possible return codes are:

0 Normal completion. An account record exactly matching the specified
critieria was found and the information was stored successfully.

8 Error completion. No account record was found for the specified member.
v If FORWARD was specified, then there are no accounting records for the

group which match or follow the specified type and member name.
v If MATCH was specified, then there is not an account record with the

specified group, type and member name.
v If SEARCH was specified, then there are no matching account records

found when searching up the hierarchy starting from the specified
group.

12 Error completion. Refer to the messages for more information.

AUTHCODE—Retrieve or Set Authorization Code for Selected Members
The AUTHCODE service changes or retrieves the authorization code in the SCLM
accounting information for members in a library that match a given pattern. The
AUTHCODE service does not change the member’s statistics or any other value in
the accounting record, including the change date and time.

The AUTHCODE service can either set all authorization codes that match a given
member and type pattern, or set only those authorization codes that also already
have a particular authorization code.

To set the authorization code for all members that match a pattern, leave the
from_authcode parameter blank.

If only members with a certain authorization code are to be set, use the
from_authcode parameter to tell SCLM to change only those members with the
given authorization code.

To retrieve the authorization code, leave both the from_authcode and the
to_authcode parameters blank. The existing authorization code is returned in
variable ZSAAUTH if a single member is requested. If a pattern is requested, the
existing authorization codes can be retrieved from the AUTHCODE report.

Command Invocation Format
FLMCMD AUTHCODE,project

,[prj_def]
,group
,type
,member
,[from_authcode]
,[to_authcode]
,[C|U]
,[dd_authmsgs]
,[dd_authrept]

Call Invocation Format
lastrc := FLMLNK('AUTHCODE',sclm_id,

,group
,type
,member
,from_authcode

ACCTINFO Service

28 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|

,to_authcode
,C|U
[,dd_authmsgs
[,dd_authrept]]);

Parameters
project

The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name. It defaults to the project name. The maximum
parameter length is 8 characters.

sclm_id
An SCLM ID associated with a given project and project definition. The
INIT service generates the SCLM ID. The maximum parameter length is 8
characters.

group The group at which the member’s authcode is to be changed. The
maximum parameter length is 8 characters.

type A pattern used to select the types of members whose authcode is to be
changed. The maximum parameter length is 10 characters.

member
A pattern used to select the members whose authcode is to be changed.
You must specify a valid member name or a valid pattern. The maximum
parameter length is 10 characters.

C|U Indicates whether the AUTHCODE service is to execute conditionally (C)
or unconditionally (U). This parameter only applies if the member name is
a pattern. If C is selected, processing stops after the first error (default). If
U is selected, the service continues to the next member even if an error
occurs.

from_authcode
The authorization code to be changed from. If the from_authcode is blank
and the to_authcode is given, then all members matching the pattern have
the authcode updated. if the from_authcode is not blank, only those
members matching the pattern, and whose authcode matches the
from_authcode, are updated. The maximum parameter length is 8
characters.

to_authcode
The authorization code to be changed to. If the to_authcode and the
from_authcode are both blank, no changes are made. If the from_authcode
is given, then the to_authcode is required. The maximum parameter length
is 8 characters.

dd_authmsgs
DDNAME of the destination of the AUTHCODE messages. If you specify a
blank ddname, SCLM routes the authcode messages to the default output
device, such as your terminal. Otherwise, before you call the AUTHCODE
service, you must allocate the ddname. The following attributes should be
used:
v DISP=MOD
v RECFM=F
v LRECL=80
v BLKSIZE=80.

AUTHCODE Service

Chapter 2. SCLM Services 29

|
|
|
|

|
|

The maximum parameter length is 8 characters.

dd_authrept
DDNAME of the destination of the AUTHCODE report. If you specify a
blank ddname, SCLM routes the authcode report to the default output
device, such as your terminal. Otherwise, before you call the AUTHCODE
service, you must allocate the ddname. The following attributes should be
used:
v RECFM=FBA
v LRECL=80
v BLKSIZE=3120.

The maximum parameter length is 8 characters.

Return Codes
Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. Authcode changed or reported successfully.

2 Normal completion. Authcode not changed. One of the following occurred:
v To_authcode = existing authcode (no change needed)
v From_authcode requested does not equal existing authcode (no change

wanted)
v Member is not editable.

4 Warning condition. Segment exists at a lower level with an authcode not
equal to the to_authcode, which could overlay the current segment.

8 Error condition. Invalid type, member, or mode parameter. See the
dd_authmsgs for details.

12 Severe error condition. Accounting record not found or severe error.

16 Severe error condition. One of the following occurred:
v Not authorized to update to_authcode, access_key mismatch, or not

authorized to update data set.
v Verification failed.
v Error updating accounting record.
v Invalid group.

SCLM might not produce messages because there was an error invoking
the AUTHCODE module.

Examples

Command Invocation Format
This example shows a command interface to the AUTHCODE service, to update
the authorization code of SCLM70.USER.SOURCE(A) from base to private.
FLMCMD AUTHCODE,SCLM70,SCLM7010,USER,SOURCE,A,BASE,PRIVATE

This example shows a command interface to the AUTHCODE service to
unconditionally update the authorization code from base to private for all
members beginning with FLM in all types of group USER in project SCLM70.
FLMCMD AUTHCODE,SCLM70,SCLM7010,USER,*,FLM*,BASE,PRIVATE,U

AUTHCODE Service

30 z/OS V1R2.0 ISPF SCLM Reference

|
|

This example selects the FLMCMD AUTHCODE service with no from_authcode or
to_authcode. It then gets the authcode value from variable ZSAAUTH in the ISPF
SHARED pool.
/* rexx exec to retrieve an authcode */
PARMS = 'SCLM70,SCLM7010,USER,SOURCE'
MEM = 'BES3 '
address ispexec 'select cmd(FLMCMD AUTHCODE,'PARMS','MEM')'
address ispexec 'vget zsaauth shared'
say 'authcode is' zsaauth

Program Invocation Format
This example shows a program call to the AUTHCODE service. The example
assumes that the START and INIT services have already completed successfully.
CALL FLMLNK('AUTHCODE ',SLMID,'USER ', 'SOURCE ','A ',

'BASE ','PRIVATE ','C ', MSGDD,
REPTDD) RETCODE(R15);

This example shows a program call to the AUTHCODE service to unconditionally
update the authorization code from ’base’ to ’private’ for all members beginning
with FLM in all types of group USER in project SCLM70.
CALL FLMLNK('AUTHCODE ',SLMID,'USER ', '* ', 'FLM* ',

' ','PRIVATE ','U ', MSGDD,
REPTDD) RETCODE(R15);

Example of an AUTHCODE Report

**
**
** SOFTWARE CONFIGURATION AND LIBRARY MANAGER (SCLM)
**
** AUTHCODE UPDATE REPORT
**
** 1999/03/08 11:02:15
**
** PROJECT: PDFTDEV
** ALTERNATE: PDFTNEWL
** GROUP: BETH
** TYPE: ARCHDEF
** MEMBER: B*
** FROM_AUTHCODE: PRIVATE
** TO_AUTHCODE: BASE
** MODE: UNCONDITIONAL
**
**

STARTING ENDING COMPLETION
MEMBER TYPE AUTHCODE AUTHCODE STATUS
-------- -------- -------- -------- -----------
BETHTEST ARCHDEF BASE BASE NOT_ATTEMPTED
BETH7 ARCHDEF PRIVATE BASE SUCCEEDED
BETH8 ARCHDEF PRIVATE BASE SUCCEEDED
BETH9 ARCHDEF PRIVATE FAILED
BROKE ARCHDEF BASE BASE NOT_ATTEMPTED
BXC ARCHDEF NOT_EDITABLE

AUTHCODE Service

Chapter 2. SCLM Services 31

BUILD—Build a Member
The BUILD service compiles, links, and integrates software components according
to a project’s architecture definition. Before a member is built, the member’s
dependency information must exist in the project database. For this reason, either
the STORE or SAVE service must complete successfully for the member before you
call the BUILD service.

Command Invocation Format

FLMCMD BUILD,project

,[prj_def]

,group

,type

,member

,[userid]

,[E|L|N|S]

,[C|F|R|U]

,[Y|N]

,[Y|N]

,[prefix_userid]

,[dd_bldmsgs]

,[dd_bldrept]

,[dd_bldlist]

,[dd_bldexit]

BUILD Service

32 z/OS V1R2.0 ISPF SCLM Reference

Call Invocation Format

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name used for the build. It defaults to the project
parameter. The maximum parameter length is 8 characters. This parameter is
used for FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group in which the build occurs. The maximum parameter length is 8
characters.

type
The type containing the member to be built. The maximum parameter length is
8 characters.

member
The member to be built. The maximum parameter length is 8 characters.

userid
The user ID of the person requesting the build. If no value is specified for
FLMCMD or a blank (’ ’) is specified for FLMLNK, it defaults to your TSO
prefix or user ID if no TSO prefix has been created. The maximum parameter
length is 8 characters.

lastrc := FLMLNK('BUILD ',sclm_id

,group

,type

,member

,{userid|' '}

,{E|L|N|S}

,{C|F|R|U}

,{Y|N}

,{Y|N}

,[{prefix_userid|' '}

,[dd_bldmsgs

,[dd_bldrept

,[dd_bldlist

,[dd_bldexit]]]]]);

BUILD Service

Chapter 2. SCLM Services 33

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

E|L|N|S
Indicates the build scope (E=extended, L=limited, N=normal, S=subunit). For
the FLMCMD interface, the default is N. There is no default for FLMLNK. The
maximum parameter length is 24 characters.

C|F|R|U
Indicates the build mode (C=conditional, F=forced, R=report,
U=unconditional). For FLMCMD, the default is C. There is no default for
FLMLNK. The maximum parameter length is 24 characters.

Y|N
Y indicates that translator listings are to be copied to the dd_bldlist ddname
only if errors occur. N indicates that all translator listings are to be copied to
the dd_bldlist ddname. For FLMCMD, the default is Y. There is no default for
FLMLNK. The maximum parameter length is 24 characters.

Y|N
Y indicates that a build report is to be produced and routed to the dd_bldrept
ddname. N indicates that a build report is not to be produced. For FLMCMD,
the default is Y. There is no default for FLMLNK. The maximum parameter
length is 24 characters.

prefix_userid
The data set name prefix to be used when locating and cataloging temporary
data sets. If no value is specified for FLMCMD or a blank (’ ’) is specified for
FLMLNK, it defaults to the user ID parameter. The maximum parameter length
is 17 characters.

dd_bldmsgs
The ddname indicating the destination of the build messages. If you specify a
blank ddname, SCLM routes the build messages to the default output device,
such as your terminal. Otherwise, before you call the BUILD service, you must
allocate the ddname; the following attributes should be used: RECFM=F,
LRECL=80, BLKSIZE=80. You cannot specify a blank ddname for FLMLNK. The
maximum parameter length is 8 characters.

dd_bldrept
The ddname indicating the destination of the build report. If you specify a
blank ddname, SCLM routes the build report to the default output device, such
as your terminal. Otherwise, before you call the BUILD service, you must
allocate the ddname; the following attributes should be used: RECFM=FBA,
LRECL=80, BLKSIZE=3120. The maximum parameter length is 8 characters.

dd_bldlist
The ddname indicating the destination of the build listings. If you specify a
blank ddname, SCLM does not generate the build listings. Otherwise, before
you call the BUILD service, you must allocate the ddname; the following
attributes should be used: DISP=MOD, RECFM=VBA, LRECL=137, BLKSIZE=3120.
The maximum parameter length is 8 characters.

dd_bldexit
The ddname indicating the destination of the build user exit data. Specify this
parameter only if your project definition defines a build user exit routine. Ask
your project manager if your project is using a build user exit routine. If you
specify a blank ddname, SCLM routes the build user exit data to NULLFILE.
Otherwise, before you call the BUILD service, you must allocate the ddname;
the following attributes should be used: RECFM=FB, LRECL=160, BLKSIZE=3200.
The maximum parameter length is 8 characters.

BUILD Service

34 z/OS V1R2.0 ISPF SCLM Reference

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the build module.

16 Severe error condition. SCLM does not produce messages because it was
unable to retrieve SCLM ID information.

Examples
These examples call the BUILD service.

Command Invocation

This service command builds the FLM01CMD member of the ARCHDEF type in
the USER1 group. The project name is PROJ1. The build mode is unconditional
and SCLM does not generate a build report. SCLM sends messages and listings to
the terminal. All other parameters are defaults.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

The service call builds the FLM01CMD member of the ARCHDEF type in the
USER1 group. The sclm_id parameter contains a valid SCLM ID returned from the
INIT service. The build scope is normal and the build mode is forced. SCLM
copies all build listings to the build listings data set and generates a build report.
All temporary data sets are allocated with the high-level qualifier of

FLMCMD BUILD,PROJ1,,USER1,ARCHDEF,FLM01CMD,,,U,,N

lastrc := FLMLNK('BUILD ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'ARCHDEF ', (* type *)
'FLM01CMD', (* member *)
' ', (* user ID *)
'N ', (* scope *)
'F ', (* mode *)
'N ', (* listings *)
'Y ', (* report *)
'PROJECT.WORKFILE ', (* temp high-level qualifier *)
'BLDMSGS ', (* dest. of messages *)
'BLDREPT ', (* dest. of report *)
'BLDLIST ', (* dest. of listings *)
'BLDEXIT '); (* exit routine *)

BUILD Service

Chapter 2. SCLM Services 35

|
|

PROJECT.WORKFILE. The ddnames for the messages, report, listings, and user
exit data set (BLDMSGS, BLDREPT, BLDLIST, and BLDEXIT, respectively) must be
allocated before calling FLMLNK.

DBACCT—Retrieve Accounting Records for a Member
The DBACCT service retrieves accounting records from the project database and
returns the information to you. SCLM retrieves the first occurrence of the
accounting record in the hierarchy, starting at the specified group. Accounting
records exist for any member for which the LOCK, SAVE, or STORE service
completes successfully. For more information on SCLM accounting records, see
“$acct_info” on page 14.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters
sclm_id

An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters.

group
The group in which the accounting record search begins. The maximum
parameter length is 8 characters.

type
The type containing the accounting record to retrieve. The maximum
parameter length is 8 characters.

member
The member whose accounting record is to be retrieved. The maximum
parameter length is 8 characters.

found_group
An output parameter that indicates the group in which SCLM finds the first
occurrence of the member’s accounting record within the hierarchy. The
maximum parameter length is 8 characters.

lastrc := FLMLNK('DBACCT ',sclm_id

,group

,type

,member

,found_group

,$acct_info

,$list_info

,$msg_array);

BUILD Service

36 z/OS V1R2.0 ISPF SCLM Reference

$acct_info
An output parameter pointing to a record containing the static portion of the
member’s accounting record. See “Pointer Parameters” on page 13 for more
details on $acct_info.

$list_info
An output parameter pointing to an array of records containing the dynamic
portion of the member’s accounting record. See “Pointer Parameters” on
page 13 for more details on $list_info.

$msg_array
An output parameter pointing to the message array. See “Pointer Parameters”
on page 13 for more details on $msg_array.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor. See “SCLM
Service Return Codes” on page 20 for more information about these.

Possible return codes are:

0 Normal completion.

4 Warning condition. SCLM could not find the accounting record.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Example
This example calls the DBACCT service.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call returns the first occurrence of the accounting record for the
FLM01MD1 member of the SOURCE type beginning in the USER1 group. The
sclm_id parameter contains a valid SCLM ID returned from the INIT service.
SCLM returns all messages produced via the $msg_array.

lastrc := FLMLNK('DBACCT ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD1', (* member *)
found_group, (* group found *)
$acct_info, (* accounting information pointer *)
$list_info, (* list information pointer *)
$msg_array); (* message array pointer *)

DBACCT Service

Chapter 2. SCLM Services 37

|
|

DBUTIL—Generate a Tailored Output Data Set and Report
The DBUTIL service retrieves information from the project database and creates
tailored output and a report. SCLM generates the tailored output in the format you
specify. It also describes the contents of the project database based on the selection
criteria you supply. You can use the tailored output as input to future FLMCMD
command invocations (using the FILE format of FLMCMD) or as input to other
project-defined processors.

If you use the FILE format of FLMCMD to call the DBUTIL service, you can save
the input parameters in a data set, then use the data set for future invocations of
the DBUTIL service. See “Using the FLMCMD File Format” on page 6 for details
on using the FILE format of FLMCMD.

The report indicates the contents of the project database based on the selection
criteria you supply to the DBUTIL service.

Command Invocation Format

Call Invocation Format
You cannot use call procedures to start this service.

Parameters
project

The project name. The maximum parameter length is 8 characters.

FLMCMD DBUTIL,project,[prj_def]

,[acct_group1|*],[acct_group2]

,[acct_group3],[acct_group4]

,[acct_group5],[acct_group6]

,[acct_type|*],[acct_member|*]

,[authcode|*],[change_code|*]

,[change_group|*],[change_userid|*]

,[language|*],[YES|NO]

,[ACCT|BMAP|*]

,[IN|OUT|*]

,[arch_group],[arch_type],[arch_member]

,[EXTENDED|NORMAL|SUBUNIT]

,[YES|NO]

,[YES|NO]

,[report_name],[dd_msgs]

,[dd_rept],[dd_tailor]

,[report_line]

DBUTIL Service

38 z/OS V1R2.0 ISPF SCLM Reference

prj_def
The project definition name to be used for the data extraction. It defaults to the
project. The maximum parameter length is 8 characters.

acct_group1 - acct_group6|*
The group containing the members, accounting records, and/or build maps to
be reported on. The maximum parameter length is 18 characters. You can
specify up to six individual acct_groups, an asterisk for all, or up to six valid
patterns. Only groups from the project definition are reported. The default is
all account groups (*).

acct_type|*
The type containing the members, accounting records, and/or build maps to
be reported on. Only types from the project definition are reported. The
maximum parameter length is 18 characters. You can specify an individual
acct_type, an asterisk for all of them, or a valid pattern. The default is all
account types.

acct_member|*
The name of the members’ accounting records and/or build maps on which
the report will occur. The maximum parameter length is 18 characters. You can
specify an individual acct_member, an asterisk for all of them, or a valid
pattern. The default is all account members.

authcode|*
The current authorization code for the member. The maximum parameter
length is 18 characters. You can specify an individual authcode, an asterisk for
all of them, or a valid pattern. The default is all authorization codes.

change_code|*
A value previously assigned by a user for reference purposes. The maximum
parameter length is 18 characters. You can specify an individual change_code,
an asterisk for all of them, or a valid pattern. The default is all change codes.

change_group|*
The name of the group in which the member was last updated. The maximum
parameter length is 18 characters. You can specify an individual change_group,
an asterisk for all of them, or a valid pattern. The default is all change groups.

change_userid|*
The user ID of the person who made the last update to the member. The
maximum parameter length is 18 characters. You can specify an individual
change_userid, an asterisk for all of them, or a valid pattern. The default is all
change_user IDs.

language|*
The language of the member. The maximum parameter length is 18 characters.
You can specify an individual language, an asterisk for all of them, or a valid
pattern. The default is all languages.

YES|NO
If you specify YES and use more than one group pattern, a precedence system
determines which members are selected. If you specify NO, SCLM selects all
versions of all members. The maximum parameter length is 24 characters. The
default value is YES.

ACCT|BMAP|*
Specify the following type of data to report on:
ACCT Accounting information
BMAP

Build map information

DBUTIL Service

Chapter 2. SCLM Services 39

* Build map and accounting information.

The maximum parameter length is 24 characters. The default value is ACCT.

IN|OUT|*
Specify the following to select members:
IN Controlled by the architecture definition
OUT Not controlled by the architecture definition
* Without using an architecture definition to identify them.

The maximum parameter length is 24 characters. The default is an asterisk,
which indicates that members will be selected without an architecture
definition. If you specify either IN or OUT, you must specify arch_group,
arch_type, and arch_member.

arch_group
The group used to identify the lowest group in the hierarchy where the
architecture begins. The maximum parameter length is 8 characters.

arch_type
The type containing the architecture definition that controls the selected
members. The maximum parameter length is 8 characters.

arch_member
The member containing the architecture definition that controls the selected
members. The maximum parameter length is 8 characters.

EXTENDED|NORMAL|SUBUNIT
Specify the following architecture scope to select:

NORMAL
Members that do or do not have compilation unit dependencies.

EXTENDED|SUBUNIT
Members that do have compilation unit dependencies.

The maximum parameter length is 24 characters. The default value is
NORMAL.

YES|NO
Specify YES to include page header information in the tailored output. In
addition to suppressing the page header information, NO positions the data in
column 1 of the tailored output. No carriage returns appear in the output. The
maximum parameter length is 24 characters. The default value is YES.

YES|NO
Specify YES to sum numeric data fields and to show the sum totals in the
tailored output. The maximum parameter length is 24 characters. The default
value is YES.

report_name
The title of the report to be written in the tailored output. The maximum
parameter length is 35 characters. Commas are not allowed in the report name.

dd_msgs
The ddname indicating the destination of the DBUTIL service messages. If you
specify a blank ddname, SCLM routes the DBUTIL service messages to the
default output device, such as your terminal. Otherwise, before you call the
DBUTIL service, you must allocate the ddname. The following attributes
should be used: RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter
length is 8 characters.

DBUTIL Service

40 z/OS V1R2.0 ISPF SCLM Reference

dd_rept
The ddname indicating the destination of the report. If you specify a blank
ddname, SCLM routes the report to the default output device, such as your
terminal. Otherwise, before you call the DBUTIL service, you must allocate the
ddname. The following attributes should be used: RECFM=FBA, LRECL=80,
BLKSIZE=3120. The maximum parameter length is 8 characters.

dd_tailor
The ddname indicating the destination of the tailored data set. If you specify a
blank ddname, SCLM does not generate the tailored output. Otherwise, before
you call the DBUTIL service, you must allocate the ddname. The following
attributes should be used: RECFM=F, V, FB, or VB; LRECL=80 (minimum); and
LRECL=2048 (maximum). If the LRECL value is less than 80, you receive an
error message. The report continues to be generated, but it is wrapped using
the LRECL value you specify. The maximum parameter length is 8 characters.

report_line
A line of data input that determines the content of the tailored output. Note
that you can include commas in the report_line. If you specify all other
parameters or if they default correctly, SCLM does not parse the report_line for
commas. The maximum parameter length is 160 characters, but the report line
will be wrapped if it is more than 80 characters long.

If you use SCLM variables with data lengths greater than 8, keep in mind that
their values can exceed 8 characters. Place these variables at the end of the
report line to ensure that the columns in the report line up evenly. See
“Chapter 6. SCLM Variables and Metavariables” on page 269 for more
information.

The default value for the report_line is the following:
@@FLMMBR @@FLMLAN @@FLMCML @@FLMNCL @@FLMBLL @@FLMTLS @@FLMCMS @@FLMNCS

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD processor. See “SCLM
Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

> 8 Severe error condition and SCLM does not produce messages. See “Return
Codes” on page 88 for a description of the return code.

Example
This example calls the DBUTIL service.

Command Invocation

FLMCMD DBUTIL,PROJ1,,USER1,,,,,,
,,,,,,,N,ACCT,*,,,,,N,N,NAME,,,
UTILTAIL,DELETE,@@FLMPRJ,PROJ1,@@FLMGRP,@@FLMTYP,@@FLMMBR

DBUTIL Service

Chapter 2. SCLM Services 41

|
|

This service command retrieves accounting information in the USER1 architecture
group. SCLM selects all versions of the member without using an architecture
definition to identify them. SCLM also selects all accounting types and accounting
members that match the pattern.

The dd_tailor parameter, UTILTAIL, indicates the destination of the tailored output
called NAME. The report_line parameter passes SCLM variables to produce a
cleanup report, which you can use to delete all of the members in a group. The
cleanup report does not have header information and does not total numeric data
fields.

DELETE—Delete Database Components
The DELETE service deletes database components. You can delete an entire
member plus its associated accounting record and build map, a member’s
accounting record and build map, or a member’s build map.

If you delete a member from a development group, and the next higher group is
non-key, you should also delete the same member from the non-key group if it
exists there.

Note: The DELETE function requires update authority for the member in order to
delete the build map and accounting information.

Command Invocation Format

Call Invocation Format

FLMCMD DELETE,project

,[prj_def]

,group

,type

,member

,access_key

,[ACCT|BMAP|TEXT]

lastrc := FLMLNK('DELETE ',sclm_id

,group

,type

,member

,access_key

,{ACCT|BMAP|TEXT}

,$msg_array);

DBUTIL Service

42 z/OS V1R2.0 ISPF SCLM Reference

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name to be used for the delete. It defaults to the project.
The maximum parameter length is 8 characters. This parameter is used for
FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group in which the delete is to occur. The maximum parameter length is 8
characters.

type
The type containing the member, accounting record, and/or build map to be
deleted. The maximum parameter length is 8 characters.

member
The name of the member, accounting record, and/or build map to be deleted.
The maximum parameter length is 8 characters.

access_key
The access key assigned to the member with the LOCK service. If you supply
the incorrect access key, the delete fails. The maximum parameter length is 16
characters.

ACCT|BMAP|TEXT
Indicates which types of data SCLM is to delete for the member. If you specify
BMAP, SCLM deletes only the member’s build map. If you specify ACCT,
SCLM deletes the member’s build map and accounting record. If you specify
TEXT, SCLM deletes the member’s build map, the member’s accounting
record, and the member. The maximum parameter length is 24 characters. For
FLMCMD, the default value is TEXT. There is no default value for this
parameter for FLMLNK.

$msg_array
An output parameter pointing to the message array. See “$msg_array” on
page 13 for more details. This parameter is used for FLMLNK only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. The member, accounting record, and/or build map
were not found. This return code is set whenever any of the data is
missing, regardless of whether the request was for ACCT, BMAP, or TEXT.

DELETE Service

Chapter 2. SCLM Services 43

|
|

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Examples
These examples call the DELETE service.

Command Invocation

This service command deletes the build map and accounting record for the
FLM01MD2 member of the SOURCE type in the USER1 group. The project name is
PROJ1. The access key for the member is XXX#04.

If the text for the member FLM01MD2 is missing, then the service returns a return
code of 4, even though deletion of the text member was requested.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call deletes the accounting record and the build map for the
FLM01MD2 member of the SOURCE type in the USER1 group. The sclm_id
parameter contains a valid SCLM ID returned from the INIT service and the access
key is XXX#04. SCLM returns all messages in the $msg_array.

DELGROUP—Delete Group Database Components
The DELGROUP service deletes SCLM-controlled database components associated
with a specified group or groups matching a specified pattern. You can delete a
member or members and all associated SCLM accounting information and build
map records whose names match the selection criteria. You can further specify
whether you want everything deleted, only build outputs, only accounting
information and build map records, or only build map records. You can also
specify that nothing actually be deleted, but that a deletion report be generated.

FLMCMD DELETE,PROJ1,,USER1,SOURCE,FLM01MD2,XXX#04,ACCT

lastrc := FLMLNK('DELETE ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD2', (* member *)
'XXX#04 ', (* access key *)
'ACCT ', (* type of data to delete *)
$msg_array); (* message array pointer *)

DELETE Service

44 z/OS V1R2.0 ISPF SCLM Reference

Command Invocation Format

Call Invocation Format

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name used for the delete. It defaults to the project
parameter. The maximum parameter length is 8 characters. This parameter is
used for FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

FLMCMD DELGROUP,project

,[prj_def]

,{group|*}

,{type|*}

,{member|*}

,{ACCT|BMAP|TEXT|OUTPUT}

,[EXECUTE|REPORT]

,[dd_list]

,[dd_msgs]

,[dd_rept]

,[dd_exit]

lastrc := FLMLNK('DELGROUP',sclm_id

,{group|*}

,{type|*}

,{member|*}

,{ACCT|BMAP|TEXT|OUTPUT}

,{EXECUTE|REPORT}

[,dd_list

[,dd_msgs

[,dd_rept

[,dd_exit]]]]);

DELGROUP Service

Chapter 2. SCLM Services 45

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

group|*
The group to be deleted. Only groups that are defined in the project definition
will have members deleted. Records in the VSAM data sets for groups that
match the pattern but are not in the project definition are not deleted. You can
specify an individual group, an asterisk (*) for all groups, or a valid pattern. If
you specify an asterisk, all groups are deleted, so use extreme caution when
using the asterisk. The maximum parameter length is 17 characters.

Note: If you use the Delete Group Utility panel to invoke Delete Group, you
cannot specify a pattern for the group field. Pattern matches in this field
are restricted because of the possible hazards of using a pattern in this
field.

type|*
The type containing the members, accounting records, and/or build maps to
be deleted. The maximum parameter length is 17 characters. You can specify
an individual type, an asterisk (*) for all types, or a valid pattern. You must
specify a type. Only members with types defined in the project definition will
be deleted.

The member pattern must also match.

member|*
The name of the members, accounting records, and/or build maps to be
deleted. The maximum parameter length is 17 characters. You can specify an
individual member, an asterisk (*) for all members, or a valid pattern. See
“Selection Parameters” on page 12 for more information on specifying wildcard
characters.

The type pattern must also match.

ACCT|BMAP|TEXT|OUTPUT
Indicates which types of data SCLM is to delete.

If you specify BMAP, SCLM deletes only the group’s build maps.

If you specify ACCT, SCLM deletes the group’s build maps and accounting
records.

If you specify TEXT, SCLM deletes the group’s build maps, accounting records,
and the PDS members associated with those records. If there is no build map
or accounting information for a PDS member, the member is not deleted even
if you specify the TEXT option.

If you specify OUTPUT, SCLM deletes the group’s build outputs that match
the selection criteria.

The maximum parameter length is 24 characters.

Because this service deletes information and there is no ″Undelete″ service,
there is no default for this parameter.

Note: SCLM can continue to search for deleted data sets that were once active
in the project. SCLM issues warning messages if references to deleted
data sets are found.

EXECUTE|REPORT
If you specify EXECUTE, any members that match the selection criteria for the
specified delete flag are deleted. A report indicating which members were
deleted is produced.

DELGROUP Service

46 z/OS V1R2.0 ISPF SCLM Reference

If you specify REPORT, no members are deleted. Instead, SCLM produces a
report indicating which members are eligible for deletion. SCLM sends this
report to the default output device. Specifying REPORT is a good way to
identify the outcome of the delete process before deleting any members. The
maximum parameter length is 24 characters. For FLMCMD, the default value
is REPORT. There is no default value for FLMLNK. You are required to have
update authority to the hierarchy data sets to use the DELGROUP service in
either REPORT or EXECUTE mode.

dd_list
The ddname indicating the destination of the purge listing for deletion of
intermediate code. You must also specify TEXT or OUTPUT and intermediate
code must be deleted to produce this report. If you specify a blank ddname, no
listing is produced. Otherwise, before you call the DELGROUP service, you
must allocate the ddname. The following attributes should be used: RECFM=VBA,
LRECL=137, BLKSIZE=3120. The maximum parameter length is 8 characters.

dd_msgs
The ddname indicating the destination of the DELGROUP messages. If you
specify a blank ddname, SCLM routes the messages to the default output
device. Otherwise, before you call the DELGROUP service, you must allocate
the ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters.

dd_rept
The ddname indicating the destination of the DELGROUP report. If you
specify a blank ddname, SCLM sends the DELGROUP report to the default
output device, such as your terminal. Otherwise, before you call the
DELGROUP service, you must allocate the ddname; the following attributes
should be used: RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter
length is 8 characters.

dd_exit
The ddname indicating the destination of the delete user exit data. Specify this
parameter only if your project definition defines a notify delete user exit
routine. Ask your project manager if your project is using a notify delete usre
exit routine. If you specify a blank ddname, SCLM routes the delete user exit
data to NULLFILE. Otherwise, before you call the DELGROUP service, you
must allocate the ddname. The following attributes should be used: RECFM=FB,
LRECL=160, BLKSIZE=3200. The maximum parameter length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the DELGROUP module.

DELGROUP Service

Chapter 2. SCLM Services 47

|
|

16 Severe error condition. SCLM does not produce messages because it was
unable to retrieve SCLM ID information.

Examples
These examples call the DELGROUP service.

Command Invocation
FLMCMD DELGROUP,PROJ1,,USER1,*,*,ACCT,EXECUTE

This service command deletes the build map and accounting records for all types
and members that are associated with the USER1 group in the PROJ1 project.
SCLM sends messages to the terminal.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

lastrc := FLMLNK('DELGROUP', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'* ', (* type *)
'* ', (* member *)
'ACCT ', (* types of data *)
'EXECUTE ' (* delete members *)
,dd_list (* listing *)
,dd_msgs (* messages *)
,dd_rept); (* report *)

This service call deletes the build maps and accounting records for all types and
members associated with the USER1 group in the PROJ1 project. The sclm_id
parameter contains a valid SCLM ID returned from the INIT service. SCLM sends
messages to the terminal.

DSALLOC—Allocate Data Sets for Group/Type
The DSALLOC service allocates a ddname that corresponds to a hierarchy view
specified by the user. The hierarchy view is a concatenation of the PDS data sets,
beginning with the PDS data set for the first_group and adding the PDS for each
group above it in the hierarchy. If the ddname already exists, the old ddname is
replaced with the new ddname. If unallocated data sets are contained in the
hierarchy view, then only the allocated data sets are associated with the ddname.
The list of data sets allocated to the ddname does not include extended types.

Command Invocation Format
FLMCMD DSALLOC,project

,[prj_def]

,first_group

,[A|P]

,total_groups

,type

,ddname

DELGROUP Service

48 z/OS V1R2.0 ISPF SCLM Reference

Call Invocation Format
lastrc := FLMLNK('DSALLOC ',sclm_id

,first_group

,{A|P}

,total_groups

,type

,ddname

,$msg_array);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name used for the delete. It defaults to the project
parameter. The maximum parameter length is 8 characters. This parameter is
used for FLMCMD only.

sclm_id
The SCLM ID associated with a given project. The INIT service generates the
SCLM ID. Maximum parameter length is 8 characters. This parameter is used
for FLMLNK only.

first_group
The first group in the hierarchy to be allocated to the ddname. Maximum
parameter length is 8 characters. This group defines the desired view of the
hierarchy. DSALLOC allocates the data sets SCLM uses to search the hierarchy
from the group specified.

A|P
A one-character value indicating the type of hierarchy to be allocated to the
ddname. Acceptable values are:
A All groups
P Primary groups only.

For FLMCMD, the default value is P. There is no default value for FLMLNK.

total_groups
The numeric value corresponding to the number of groups for which the
allocation is performed. This number includes the first_group. Specify a zero
(0) if the entire hierarchy view is wanted. The default value is zero. If this
value is greater than the number of groups in the view, all groups in the view
are allocated and a warning occurs. The maximum parameter length is 3
characters.

type
The name of the type for which the allocation is performed. Maximum
parameter length is 8 characters.

ddname
The ddname for the allocated physical data sets corresponding to the desired
hierarchy view. The physical data set names are dynamically allocated to the
ddname. You can specify the ddname to be used or leave it blank for the

DSALLOC Service

Chapter 2. SCLM Services 49

FLMLNK interface. If the ddname already exists, the old ddname is replaced
with the new ddname. A blank value is not allowed for FLMCMD. If the
ddname is blank, SCLM creates a ddname and uses it to allocate data sets; this
name is returned to the user. Maximum length of this field is 8 characters.

$msg_array
A value that points to the message array. See “Pointer Parameters” on page 13
for more details on $msg_array. This parameter is used for FLMLNK only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. The $msg_array parameter contains the warning
message associated with this condition. A warning occurs if the number of
data sets allocated to the ddname is less than the number requested in the
total_groups parameter.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Examples
These examples call the DSALLOC service.

Command Invocation
FLMCMD DSALLOC,PROJ1,,USER1,P,4,SOURCE,APPL

This service invocation returns the ddname APPL with the physical data set names
corresponding to the hierarchy view specified by the first_group and the total
number of groups. If the hierarchy consisted of 4 groups (USER1, INT, TEST, and
RELEASE), these 4 physical data set names would be allocated to ddname APPL.
A user wanting a ddname corresponding to a single group would specify the same
group for the first_group and 1 for the total number of groups.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See Chapter 3. Sample Programs Using SCLM Services, for specific
examples.

lastrc := FLMLNK ('DSALLOC ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* first group *)
'P', (* hierarchy *)
4, (* total groups *)
'SOURCE ', (* type *)
ddname, (* ddname to allocate *)
$msg_array); (* message array pointer *)

Assume that the ddname for the preceding example is APPL. This service
invocation returns the ddname APPL with the physical data set names

DSALLOC Service

50 z/OS V1R2.0 ISPF SCLM Reference

|
|

corresponding to the hierarchy view specified by the first_group and the total
number of groups. If the hierarchy consisted of 4 groups (USER1, INT, TEST, and
RELEASE), these 4 physical data set names would be allocated to ddname APPL.
Note the project is determined by the sclm_id that is obtained by the INIT service
call. A user wanting a ddname corresponding to a single group would specify the
same group for the first_group and 1 for the total number of groups.

EDIT— Edit a Member of a Controlled Library
The EDIT service brings up an SCLM edit session for the requested member. All of
the functions of the SCLM edit panel are available from the edit service, including
locking, parsing, and storing SCLM accounting data. The SCLM edit commands,
such as SPROF, SCREATE, SREPLACE, and SMOVE, are the same as from the
SCLM edit dialog.

Command Invocation Format
FLMCMD EDIT,project

,[prj_def]

,group1

,[group2]

,[group3]

,[group4]

,type

,member

,[Y|N]

,[imac]

,[prof]

,[Y|N]

,[Y|N]

,[Y|N]

,[Y|N]

,[authcode]

,[chgcode]

,[volser]

,[dd_editmsgs];

DSALLOC Service

Chapter 2. SCLM Services 51

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Call Invocation Format

Parameters
project

The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name to be used for edit. It defaults to project. The
maximum parameter length is 8 characters.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters.

group1
The development group at which the member is to be edited. The maximum
parameter length is 8 characters.

group2
Name of the second group in the concatenation. The maximum parameter
length is 8 characters.

group3
Name of the third group in the concatenation. The maximum parameter length
is 8 characters.

lastrc := FLMLNK('EDIT', sclm_id

,group1

,group2

,group3

,group4

,type

,member

,Y|N

,imac

,prof

,Y|N

,Y|N

,Y|N

,Y|N

[,authcode

[,chgcode)

[,volser

[,dd_editmsgs]]]]);

EDIT Service

52 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

group4
Name of the fourth group in the concatenation. The maximum parameter
length is 8 characters.

type
The type containing the member to be edited. The maximum parameter length
is 8 characters.

member
The member to be edited. The maximum length for this parameter is 8
characters.

Y|N
Y indicates that SCLM will allocate the entire hierarchy, beginning with
group1. If Y is selected, group2, group3 and group4 must be blank. N indicates
that SCLM will allocate only group1, group2, group3, and group4 (default).

imac
The name of an initial macro to be run. The maximum parameter length is 8
characters.

prof
The edit profile name to use for the edit session. The maximum parameter
length is 8 characters.

Y|N
Y indicates that you will have an opportunity to confirm cancel, move, and
replace (default). N indicates that cancel, move, and replace commands will
execute without confirmation. The maximum parameter length is 24 characters.

Y|N
Y indicates that mixed edit mode is to be used. N indicates that mixed edit
mode is not to be used (default). The maximum parameter length is 24
characters.

Y|N
Y indicates that the data will be edited on the workstation. N indicates that the
data will be edited on the host (default). The maximum parameter length is 24
characters.

Y|N
Y indicates that the length of variable blocked data will be preserved. N
indicates that blanks at the end of the data are retained (default). The
maximum parameter length is 24 characters.

authcode (optional)
The authorization code to be used for the edit session. SCLM uses the
authorization code for the verification just like the SCLM edit dialog. If you do
not enter a blank or do not supply an authcode SCLM uses one of the
following default values:
v The authorization code from the existing member, if the member being

edited exists in the hierarchy.
v The default authorization code for the group if the member does not exist in

the hierarchy.

The maximum parameter length is 8 characters.

chgcode (optional)
The default change code for the edit session. If the member’s accounting record
lists the change code, SCLM updates the date and time stamps for the existing
change code entry. The maximum parameter length is 8 characters.

EDIT Service

Chapter 2. SCLM Services 53

|
|
|
|
|

|
|

|
|

|

|
|
|
|

volser (optional)
Volume serial for parser listings data set. The maximum parameter length is 8
characters.

dd_editmsgs (optional)
DDNAME of the destination of the edit messages. The maximum parameter
length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion; data was saved.

4 Normal completion; data was not saved.

8 Error condition. See the dd_editmsgs for details.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the edit module.

14 Member in use.

Example
These examples call the EDIT service.

Command Invocation Format
FLMCMD EDIT,sclm70,sclm7044,user,,,,SOURCE,A,Y

This service command edits SCLM70.USER.SOURCE(A), drawing down member a
from the hierarchy, if it is not in group USER. Alternate SCLM7044 is used to
determine the hierarchy.

Program Invocation Format
CALL FLMLNK('EDIT ',SLMID,'USER ',BLNK8,BLNK8,BLNK8,

'SOURCE ','A ',Y,BLNK8,BLNK8,
Y,N,N,N,'PRIVATE ','R8EDS ',BLNK8,
DDEDIT)
RETCODE(R15);

This service call edits member A in group USER with type SOURCE, drawing
down member EDIT service. The example assumes that the START and INIT
services have already completed successfully, so that the SLMID value is valid.

The ddname DDEDIT has been allocated to a data set with valid characteristics.

The authcode is set to ’PRIVATE’ and the change code is set to ’R8EDS’.

END— End an SCLM Services Session
The END service stops an SCLM services session. It frees an application ID
generated by the START service. Each START service invocation needs a matching
END service invocation. This service also calls the FREE service to free any SCLM
IDs associated with the given application ID that have not been explicitly freed.

EDIT Service

54 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

|
|
|

|
|

|

|

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters
appl_id

The application ID associated with the SCLM services session you want to
stop. You must generate the application ID using the START service. The
maximum parameter length is 8 characters.

msg_line
An output parameter that has a buffer containing any END service error
message. The maximum parameter length is 80 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor.

Possible return codes are:

0 Normal completion.

4 Warning condition. SCLM cannot free an SCLM ID associated with the
application ID.

8 Error condition. See the msg_line parameter description for more details.

Example
This example calls the END service.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call ends the SCLM services session identified by the appl_id
parameter. The appl_id parameter contains a valid application ID returned from
the START service. SCLM returns messages in the msg_line parameter.

EXPORT—Extract SCLM Accounting Information for a Group
The export service captures all SCLM accounting and build map information
associated with a specified group. You can use this service with the IMPORT
service to create a consistent set of data that can be archived or used to create a
new release, rename a group, or transport software from one hierarchy to another.

lastrc := FLMLNK('END ',appl_id,msg_line);

lastrc := FLMLNK('END ', (* service *)
appl_id, (* application ID *)
msg_line); (* error messages *)

END Service

Chapter 2. SCLM Services 55

|

Although the SCLM Migration Utility provides a similar function, using the
EXPORT and IMPORT services allows you to save build maps. Data presently
residing in the group specified is not changed by this service.

Command Invocation Format

Call Invocation Format

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name used for the export. It defaults to the project
definition. The maximum parameter length is 8 characters. This parameter is
used for FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group to be exported. The maximum parameter length is 8 characters. The
group must be defined in the project definition. The group must have export
VSAM data sets defined in the project definition.

Y|N
Indicates whether to purge previously exported data from the export data sets
for the group. The export data sets must be empty before new export data can
be stored in them. If you specify Y, SCLM attempts to purge the data in the
data sets. If you specify Y and the purge fails, the export does not occur. If you
specify N, SCLM assumes that the export data sets are empty and does not
attempt to purge the data sets. If the export data sets are not empty, the export
does not occur. The maximum parameter length is 24 characters. For
FLMCMD, the default value is N. There is no default value for FLMLNK.

FLMCMD EXPORT,project

,[prj_def]

,group

,[Y|N]

,[dd_msgs]

,[dd_rept]

lastrc := FLMLNK('EXPORT ',sclm_id

,group

,{Y|N}

[,dd_msgs

[,dd_rept]]);

EXPORT Service

56 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|

dd_msgs (optional)
The ddname indicating the destination of the export messages. If you specify a
blank ddname, SCLM routes the export messages to the default output device,
such as your terminal. Otherwise, before you call the EXPORT service, you
must allocate the ddname; the following attributes should be used: RECFM=F,
LRECL=80, BLKSIZE=80. The maximum parameter length is 8 characters.

dd_rept (optional)
The ddname indicating the destination of the export report. If you specify a
blank ddname, SCLM routes the export report to the default output device,
such as your terminal. Otherwise, before you call the EXPORT service, you
must allocate the ddname; the following attributes should be used: RECFM=F,
LRECL=80, BLKSIZE=80. The maximum parameter length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the EXPORT module.

16 Severe error condition. SCLM does not produce messages because it was
unable to retrieve SCLM ID information.

Examples

Command Invocation

FLMCMD EXPORT,PROJ1,,USER1,Y

This service command exports the USER1 group of the PROJ1 project. The export
data sets are purged of any existing information before the SCLM accounting
information is exported. SCLM sends messages and the report to the terminal.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

lastrc := FLMLNK('EXPORT ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'Y ', (* purge exported data *)
'EXPMSGS ', (* messages *)
'EXPREPT '); (* report *)

EXPORT Service

Chapter 2. SCLM Services 57

|
|
|
|
|
|

|
|
|
|
|
|

|
|

This service call exports the USER1 group. The sclm_id parameter contains a valid
SCLM ID returned from the INIT service. The export data sets are purged of any
existing information before the SCLM accounting information is exported. SCLM
sends messages and the report to the terminal.

FREE—Free an SCLM ID
The FREE service frees an SCLM ID generated by the INIT service. Each INIT
service invocation needs a matching FREE service invocation. After freeing the
SCLM ID, SCLM closes all project data sets and frees the project definition
specified on the INIT service.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters
sclm_id

The SCLM ID to be freed. The INIT service must generate the SCLM ID. The
maximum parameter length is 8 characters.

msg_line
An output parameter that is a buffer containing any FREE service error
message. The maximum parameter length is 80 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor.

Possible return codes are:

0 Normal completion.

8 Error condition. See the msg_line parameter description for more details.

Example
This example calls the FREE service.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

lastrc := FLMLNK('FREE ',sclm_id
,msg_line);

lastrc := FLMLNK('FREE ', (* service *)
sclm_id, (* SCLM ID *)
msg_line); (* error messages *)

EXPORT Service

58 z/OS V1R2.0 ISPF SCLM Reference

|

This service call frees the SCLM ID identified by the sclm_id parameter. The
sclm_id parameter contains a valid SCLM ID returned from the INIT service.
SCLM returns messages in the msg_line parameter.

IMPORT—Import SCLM Accounting Information to Current Project
The IMPORT service reintroduces the exported SCLM accounting information into
the context of the current project, after first verifying that this data corresponds to
the current contents of the SCLM controlled data sets.

Like the SCLM editor, the IMPORT service verifies authorization codes and
prohibits simultaneous updates of members. The group specified to receive the
import must be a development group. The IMPORT service also ensures that all
the software components to be imported are available and have correct accounting
information. Finally, the IMPORT service verifies that each software component is
either new or based directly on the version that exists in the higher group.

Note: Upon completion, the IMPORT service purges the EXPORT database of all
records that were successfully imported.

Command Invocation Format

Call Invocation Format

FLMCMD IMPORT,project

,[prj_def]

,group

,[authcode│' ']

,[change_code│' ']

,[userid│' ']

,[C│U│R]

,[dd_msgs]

,[dd_rept]

lastrc := FLMLNK('IMPORT ',sclm_id

,group

,{authcode}

,{change_code}

,{userid}

,{C│U│R}

[,dd_msgs

[,dd_rept]]);

FREE Service

Chapter 2. SCLM Services 59

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name used for the import. It defaults to the project
parameter. The maximum parameter length is 8 characters. This parameter is
used for FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group into which data is being imported. The maximum parameter length
is 8 characters. The group must be defined in the project definition as a
development group. Furthermore, the group must have export accounting data
sets defined for it in order for import to work.

authcode
The authorization code to be used for the lock. SCLM uses the authorization
code for the verification steps described in “LOCK—Lock a Member or Assign
an Access Key” on page 63. If you do not supply an authcode for FLMCMD, or
if you specify a blank for either FLMCMD or FLMLNK, SCLM uses the
authorization code from the exported accounting information. The maximum
parameter length is 8 characters.

change_code
If you have a change code verification routine, when you specify this
parameter, you must ensure that the change code is valid. When you specify a
valid change code, the IMPORT service adds the change code to each editable
member’s accounting record and updates the change code date and time to the
change date and time from the exported accounting record. If you specify a
change code that is already listed in a member’s exported accounting record,
the IMPORT service does not add a duplicate change code to the accounting
record. It uses the one from the exported accounting record. For FLMCMD, the
default value is blank; unless a change code is specified, the IMPORT service
will not perform verification. There is no default value for FLMLNK.

userid
If you supply a value for this parameter, SCLM replaces the USERID field in
each exported accounting record with the value supplied. If you do not specify
a value, SCLM uses the user ID from the exported accounting information. The
maximum parameter length is 8 characters. If no value is specified for
FLMCMD or blank is specified for either FLMCMD or FLMLNK, the user ID
from the exported accounting information will be used.

C|U|R
Indicates the import mode, where C=conditional, U=unconditional, and
R=report. The maximum parameter length is 24 characters.

When you specify C, the IMPORT service attempts to import the specified
group only when each accounting record and build map record successfully
passes all the necessary verifications. The IMPORT service fails if any one of
these records cannot pass verification. Thus, when you specify conditional

IMPORT Service

60 z/OS V1R2.0 ISPF SCLM Reference

mode, the IMPORT service imports all records or none. The IMPORT service
deletes the record from the export database once it has been imported
successfully into the specified group.

When you specify U, the IMPORT service performs the same set of
verifications, but attempts to import the group even if one or more records do
not pass verification. In this case, the IMPORT service imports only those
records that passed verification and leaves the records that failed verification in
the export database. In addition, IMPORT attempts to store an accounting
record with a predecessor baseline date/time verification error. The IMPORT
service deletes the record from the export database once it has been imported
successfully into the specified group.

When you specify R, the IMPORT service performs the verification and reports
the eligibility of members for import. For FLMCMD, the default value is C.
There is no default value for FLMLNK.

dd_msgs (optional)
The ddname indicating the destination of the import messages. If you specify a
blank ddname, SCLM routes the import messages to the default output device,
such as your terminal. Otherwise, before you call the IMPORT service, you
must allocate the ddname; the following attributes should be used: RECFM=F,
LRECL=80, BLKSIZE=80. The maximum parameter length is 8 characters.

dd_rept (optional)
The ddname indicating the destination of the import report. If you specify a
blank ddname, SCLM routes the import messages to the default output device,
such as your terminal. Otherwise, before you call the IMPORT service, you
must allocate the ddname; the following attributes should be used: RECFM=F,
LRECL=80, BLKSIZE=80. The maximum parameter length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the IMPORT module.

16 Severe error condition. SCLM does not produce messages because it was
unable to retrieve SCLM ID information.

Examples

Command Invocation
FLMCMD IMPORT,PROJ1,,USER1,,,,C

This service command imports data into the USER1 group in the PROJ1 project in
conditional mode. SCLM sends messages and listings to the terminal.

IMPORT Service

Chapter 2. SCLM Services 61

|

|

|
|

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

lastrc := FLMLNK('IMPORT ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
' ', (* authorization code *)
' ', (* change code *)
' ', (* user ID *)
'C ', (* mode *)
'MESSAGES', (* messages *)
'REPORT '); (* report *)

This service call imports the USER1 group in conditional mode. The sclm_id
parameter contains a valid SCLM ID returned from the INIT service. The ddnames
for the messages and report (MESSAGES and REPORT respectively) must be
allocated before calling FLMLNK.

INIT—Generate an SCLM ID
The INIT service initializes an SCLM ID. During this process, it also initializes the
specified project definition. The INIT service also checks to make sure that the
project definition is current. The project definition macros must be reassembled
after installing SCLM 3.5. If the macros have not been reassembled, SCLM issues
an error message. After the INIT service generates an SCLM ID, it can be passed to
other SCLM services, such as DELETE and LOCK. Each INIT service invocation
needs a matching FREE service invocation.

Note: SCLM maintains allocations of data sets in the hierarchy between uses of
SCLM services. This enhances the performance of SCLM; however, if data
sets in the hierarchy are created or deleted, the FREE service will need to be
invoked to release the existing allocations and a new INIT service invoked
to regain access to the project definition.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters
appl_id

The application ID with which the generated SCLM ID is to be associated. The
application ID must be generated by the START service. The maximum
parameter length is 8 characters.

lastrc := FLMLNK('INIT ',appl_id

,project

,prj_def

,sclm_id

,msg_line);

IMPORT Service

62 z/OS V1R2.0 ISPF SCLM Reference

project
The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name to be initialized for the SCLM ID. The maximum
parameter length is 8 characters.

sclm_id
The generated SCLM ID. Each time you invoke the INIT service, it generates a
unique SCLM ID. The maximum parameter length is 8 characters.

msg_line
An output parameter that is a buffer containing any INIT service error
message. The maximum parameter length is 80 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor. See “SCLM
Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

8 Error condition. See the msg_line parameter description for more details.

Example
This example calls the INIT service.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call initializes an SCLM ID for the PROJ1 project using the PROJ1
project definition. The appl_id parameter contains a valid application ID returned
from the START service. SCLM returns messages in the msg_line parameter.

LOCK—Lock a Member or Assign an Access Key
The LOCK service locks a member in a development library, assigns the member
an access key, or both. In most cases, LOCK allows one member to be modified by
only one user at a time. Locking a member also ensures that updates to the
member can occur only in the specified development library until you unlock or
promote the member. The member to be locked does not have to exist in a
development library or anywhere in the SCLM project hierarchy.

Suppose you are creating a new member on your programmable workstation. You
can use LOCK to reserve the member name for future use.

lastrc := FLMLNK('INIT ', (* service *)
appl_id, (* application ID *)
'PROJ1 ', (* project name *)
'PROJ1 ', (* project definition name *)
sclm_id, (* SCLM ID *)
msg_line); (* error messages *)

INIT Service

Chapter 2. SCLM Services 63

|
|

You can assign an access key to the member to make the member even more
secure than just locking it does. If you assign an access key to a member, you
must, thereafter, provide that access key to further modify the member. For an
explanation on using access keys, refer to ISPF Software Configuration and Library
Manager (SCLM) Developer’s and Project Manager’s Guide. When using access keys,
remember:
v Access keys have no effect on the BUILD, DBACCT, DBUTIL, PARSE, and

RPTARCH services.
v You must supply the correct member access key when you call the DELETE,

SAVE, STORE, and UNLOCK services.
v Before you can promote a member, you must call the UNLOCK service to

remove a member’s access key. The PROMOTE service promotes any member
that has a blank access key.

v If you have successfully completed the SAVE or STORE service for a member,
the member remains locked. You can still use the LOCK service to assign an
access key to the member.

In most cases, LOCK allows one member to be modified by only one user at a time
(see Note). When you edit a member in one development library, LOCK prohibits
others from editing the same member in their development libraries. Another user
cannot edit the member until you delete the member and its accounting
information from your group or you promote the member to a common group.

Note: Depending upon the software configuration management plan for a project,
a temporary copy of a member could exist in two development libraries at
the same time. Refer to refer to ISPF Software Configuration and Library
Manager (SCLM) Developer’s and Project Manager’s Guide for more
information, or see the project manager for the project.

The LOCK service provides the following capabilities:
v Verifying a group

LOCK verifies that the group specified is valid. Group verification allows SCLM
to control all source modifications to the higher groups of the hierarchy through
the promote function.

v Verifying an authorization code
The project administrator defines a list of authorization codes to each group in the
project’s database. An authorization code is an identifier that SCLM uses to
control authority to update and promote members within a hierarchy.
The LOCK service can only lock those members in the group that are assigned
one of the authorization codes defined to the group. See “FLMGROUP Macro”
on page 174 for more information.

v Verifying predecessors
The LOCK service guarantees that the member to be locked in the development
library is the most current version of the member within the hierarchical view.
Predecessors of the member are previous versions of a member existing within
the same hierarchical view.
The LOCK service ensures that the member to be locked does not overlay
changes to a predecessor. LOCK does this by verifying that the predecessor of
each version of the member within the hierarchical view has not been modified.

v Verifying build output

LOCK Service

64 z/OS V1R2.0 ISPF SCLM Reference

You cannot lock members that are outputs of a build. This verification prevents
accidental modification of a build output member, such as text files and
compiler listings. (These members are referred to as “noneditable” elsewhere in
this book.)

v Verifying access keys
The LOCK service also prevents you from accidentally modifying or deleting a
member you do not control. The access key that you store with the accounting
information for a member provides this verification. Locking a member with an
access key allows you to prevent others from accidentally modifying or
promoting the member if they make changes while working outside of SCLM.
Use the access key as a signal to other developers, not as a security measure. For
example, you can use the access key to indicate the location of the member or
the reason it was locked.

Command Invocation Format

Call Invocation Format

FLMCMD LOCK,project

,[prj_def]

,group

,type

,member

,[authcode]

,[access_key]

,[userid]

lastrc := FLMLNK('LOCK ',sclm_id

,group

,type

,member

,{authcode|' '}

,{access_key|' '}

,{userid|' '}

,found_group

,max_prom_group

,$acct_info

,$list_info

,$msg_array);

LOCK Service

Chapter 2. SCLM Services 65

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name to be used for the lock. It defaults to project. The
maximum parameter length is 8 characters. This parameter is used for
FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group in which the member is to be locked. The specified group must be a
development library. The maximum parameter length is 8 characters.

type
The type containing the member to be locked. The maximum parameter length
is 8 characters.

member
The member to be locked. The maximum parameter length is 8 characters.

authcode
The authorization code to be used for the lock. If you do not supply an
authcode, SCLM uses one of the following default values:
v The authorization code from the existing member if the member being

locked exists in the hierarchy
v The default authorization code for the group if the member does not exist in

the hierarchy.

The maximum parameter length is 8 characters.

access_key
The access key to be assigned to the member. It defaults to blank. The
maximum parameter length is 16 characters. You must use the access key for
any further manipulation of the member until you use the UNLOCK service to
remove the access key.

userid
User ID of the person requesting the lock. It defaults to the current system user
ID. The maximum parameter length is 8 characters.

found_group
An output parameter that indicates the group in which the first occurrence of
the member exists within the hierarchy. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

max_prom_group
An output parameter that indicates the highest group in the hierarchy to which
the member can be promoted. This member’s maximum promotable group is
based on the authorization code you use for the lock. The maximum parameter
length is 8 characters. This parameter is used for FLMLNK only.

$acct_info
An output parameter pointing to a record containing the static portion of the
member’s accounting record. See “$acct_info” on page 14 for more details. This
parameter is used for FLMLNK only.

LOCK Service

66 z/OS V1R2.0 ISPF SCLM Reference

$list_info
An output parameter pointing to an array of records that contains the dynamic
portion of the member’s accounting record. See “$list_info” on page 15 for
more details. This parameter is used for FLMLNK only.

$msg_array
An output parameter pointing to the message array. See “$msg_array” on
page 13 for more details. This parameter is used for FLMLNK only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. If a member is already locked, and no information
concerning the lock has changed (the change code, or language, for
example), then no action will be taken, but the return code will still be 0.
No audit or versioning records will be written in this case.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Examples
These examples call the LOCK service.

Command Invocation

This service command locks the FLM01MD2 member of the SOURCE type in the
USER1 group. The project name is PROJ1. The access key to be assigned to the
member is XXX#04. The authcode and user ID parameters are defaults.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call locks the FLM01MD2 member of the SOURCE type in the USER1
group. The sclm_id parameter contains a valid SCLM ID returned from the INIT

FLMCMD LOCK,PROJ1,,USER1,SOURCE,FLM01MD2,,XXX#04

lastrc := FLMLNK('LOCK ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD2', (* member *)
'TESTAC ', (* authorization code *)
'XXX#04 ', (* access key *)
' ', (* user ID *)
found_group, (* found group *)
max_prom_group, (* maximum promotable group *)
$acct_info, (* accounting information pointer *)
$list_info, (* list information pointer *)
$msg_array); (* message array pointer *)

LOCK Service

Chapter 2. SCLM Services 67

|
|

service. The authorization code to be used for the lock verification is TESTAC and
the access key is XXX#04. USERID is the user requesting the lock. SCLM returns all
messages in the $msg_array parameter.

MIGRATE—Create Accounting for Selected Members
The MIGRATE service creates or updates SCLM accounting information for
members in a development library that match a given pattern.

MIGRATE checks each member whose name matches the pattern for valid SCLM
accounting information. If a selected member does not have valid accounting
information or if forced mode is specified, MIGRATE invokes the SAVE service to
lock, parse, and store the member. All of the rules and restrictions that apply to the
SAVE service also apply to the MIGRATE service.

Note: The MIGRATE service does not parse a member correctly if the member is
packed. Make sure that the pack mode is off in the member’s profile.

For more information on the SAVE, LOCK, PARSE, and STORE services, see their
service descriptions in this chapter.

Command Invocation Format
FLMCMD MIGRATE,project,[prj_def]

,group,type,member

,[authcode]

,[language]

,[change_code]

,[C|U|F]

,[dd_migmsgs]

,[dd_miglist]

,[dd_migrept]

,[date]

,[time]

Call Invocation Format
lastrc:=FLMLNK('MIGRATE ',sclm_id

,group

,type

,member

,authcode

,language

,change_code

,C|U|F

,[dd_migmsgs]

LOCK Service

68 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

,[dd_miglist]

,[dd_migrept]

,[date]

,[time]);

Parameters
project

The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name to be used for the lock, parse, and store of
migrated members. It defaults to the project parameter. The maximum
parameter length is 8 characters.

group
The group in which the migration is to occur. The specified group must be a
development group. The maximum parameter length is 8 characters.

type
The type containing the members. The maximum parameter length is 8
characters.

member
A pattern used to select the members to be migrated. The maximum parameter
length is 10 characters. You must specify a valid member name or valid
pattern, or an error message appears.

authcode
The authorization code to be used for locking selected members. If you do not
supply an authcode or the authcode is blank, SCLM uses default values as
follows:
v The authorization code from the existing member if the member being

migrated exists in the hierarchy
v The default authorization code for the group if the member does not exist in

the hierarchy.

The maximum parameter length is 8 characters.

language
The language of the member. The maximum parameter length is 8 characters.
You must specify the language the first time you save a member.

change_code
A change_code to be added to the information obtained by parsing the
member. If the member’s accounting record lists the change_code, SCLM
updates the date and time stamps for the existing change_code entry. The
maximum parameter length is 8 characters.

C|U|F
Indicates the migrate mode (C=Conditional; U=Unconditional; F=Forced). The
maximum parameter length is 24 characters. The default value for FLMCMD is
C. There is no default value for FLMLNK.

dd_migmsgs
The ddname indicating the destination of the messages generated by the
MIGRATE service. If you specify a blank ddname, SCLM routes the MIGRATE
service messages to the default output device, such as your terminal.

MIGRATE Service

Chapter 2. SCLM Services 69

|
|
|
|
|
|
|
|

Otherwise, before you call the MIGRATE service, you must allocate the
ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters.

dd_miglist
The ddname indicating the destination of the parser listings. If you specify a
blank ddname, SCLM does not generate the parser listings. The maximum
parameter length is 8 characters.

If the parser for the specified language does not produce a listing, specify a
blank ddname. The language parsers supplied by SCLM do not produce a
listing. If the parser for the specified language does produce a listing and you
specified a ddname, allocate the ddname with the attributes required by the
parser. Project-specific parsers can produce a listing. See “FLMTRNSL Macro”
on page 190 for more information on project-defined parsers.

dd_migrept
The ddname indicating the destination of the migrate report. If you specify a
blank ddname, SCLM routes the migrate report to the default output device,
such as your terminal. Otherwise, before you call the MIGRATE service, you
must allocate the ddname; the following attributes should be used: RECFM=FBA,
LRECL=80, BLKSIZE=3120. The maximum parameter length is 8 characters.

date
The date to assign to the accounting record and member statistics. Use this
field if you want to keep audit records and versions from another library
system. The date defaults to the current date. This parameter is required if the
″time″ parameter is entered. The parmeter length is 10 characters. The date,
with a 4-character year, must be specified in the national language format.

time
The time to assign to the accounting record and member statistics. This
parameter is required if the ″date″ parameter is entered. The time must be
specified in the national language format. The parameter length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

Examples
These examples call the MIGRATE service.

Command Invocation

This service command migrates (locks, parses, and stores accounting information)
members with names beginning MOD (such as MOD1, MOD2, or MODULE) of

FLMCMD MIGRATE,PROJ1,,USER1,SOURCE,MOD*,TESTAC,COBOL,CC001234,,,PARSEDD

MIGRATE Service

70 z/OS V1R2.0 ISPF SCLM Reference

|
|

|

the type SOURCE in the USER1 group. The project name is PROJ1 and the
authorization code is TESTAC. Change code CC001234 is to be added to the
information obtained by parsing the member with the COBOL parser.

SCLM copies parser listings to the PARSEDD ddname only if errors occur. You
must allocate the PARSEDD ddname before you call the service.

Messages generated by the MIGRATE service appear on the default output device -
this is probably the terminal if you are running under a foreground TSO session.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

lastrc := FLMLNK('MIGRATE ', (* service *)
scln_id, (* application ID *)
'RELEASE ', (* group *)
'SOURCE ', (* type *)
'* ', (* all members *)
' ', (* default authcode *)
'HLASM ', (* language *)
'INIT ', (* change code *)
'C ', (* conditional *)
'MSGSDD ', (* messages ddname *)
'LISTDD ', (* list ddname *)
'REPTDD '; (* report ddname *)

This service call migrates all members of the SOURCE type and RELEASE group
in the project. Each member’s accounting record has the default authcode, as
defined in the project definition. All members have a language of HLASM and a
change code of INIT. Any messages are written to the data set allocated to
MSGSDD, and the migrate report appears in the data set allocated to REPTDD.
Any parser errors are written to the data set allocated to LISTDD.

This service call initializes an SCLM ID for the PROJ1 project using the PROJ1
definition. The appl_id parameter contains a valid application ID returned from the
START service. SCLM returns messages in the msg_line parameter.

NEXTGRP— Retrieve Next Group in SCLM Hierarchy
The NEXTGRP service returns the name of the next group in a given hierarchy. For
a given group, the next group is returned in the SHARED pool variable
ZSNXTGRP. An indicator whether the group is key or nonkey is returned in
SHARED pool variable ZSNGPKEY. The possible values for ZSNGPKEY are KEY
for key groups, and NONKEY for nonkey groups.

Command Invocation Format
FLMCMD NEXTGRP,project

,[prj_def]
,group
,[dd_msgs]

MIGRATE Service

Chapter 2. SCLM Services 71

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Call Invocation Format
lastrc:=FLMLNK('NEXTGRP ',sclm_id

,group
,dd_msgs);

Parameters
project

The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name to be used for NEXTGRP. It defaults to the project
parameter. The maximum parameter length is 8 characters.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters.

group
The group for which the ″next″ group is to be found. The maximum parameter
length is 8 characters.

dd_msgs
The ddname indicating the destination of the messages generated by the
NEXTGRP service. The maximum parameter length is 8 characters.

Return Codes
Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. NEXTGRP completed successfully. Variables are set.

4 Warning condition. The group is already the top group. No variables are
set.

8 Error condition. Invalid project, prj_def, or group name.

12 Severe error condition. SCLM might not produce messages because there
was an error invoking the NEXTGRP module. For some conditions,
messages are available.

Examples

Command Invocation
The following REXX exec begins at group USER and finds each successive group
in the hierarchy defined by the SCLM7010 alternate of the SCLM70 project.
/* REXX exec to find the next groups in a hierarchy */
TRACE off
address ispexec
group = 'USER'
done = 'false'
address 'TSO' 'alloc fi(ddm) da(sclm.msgs) shr mod'
do until done = 'true'

'select cmd(FLMCMD NEXTGRP,SLCM70,SCLM7010,'group',ddm)'
if rc > 0 then

do
done = 'true'

end

NEXTGRP Service

72 z/OS V1R2.0 ISPF SCLM Reference

|
|

else
do

'vget (zsnxtgrp,zsngpkey) shared'
say 'For group' group 'the next group is' zsnxtgrp zsngpkey
group = zsnxtgrp

end
end
address 'TSO' 'free fi(ddm)'

Executing this example produces this output:
For group USER the next group is STGE KEY
For group STGE the next group is DEV KEY
For group DEV the next group is INT KEY
For group INT the next group is REL KEY
For group REL the next group is BASE KEY

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This program fragment uses the NEXTGRP service to find the group that USER
promotes into. The variables ZSNXTGRP and ZSNGPKEY are vdefined to local
program variables, and the values set by the NEXTGRP service are retrieved from
the shared pool by the VGET service. The example assumes that the START and
INIT services have already completed successfully, so that the SLMID value is
valid. The ddname DDMSGS has been allocated to a data set with valid
characteristics.
CALL FLMLNK('NEXTGRP ',SLMID,'USER ',DDMSGS)

RETCODE(R15);
EVAL(8),' ',' ');

CALL ISPLINK ('VDEFINE ', 'ZSNXTGRP', ZSNXTGRP, 'CHAR ',
EVAL(8),' ',' ');

CALL ISPLINK ('VDEFINE ', 'ZSNGPKEY', ZSNGPKEY, 'CHAR ',
CALL ISPLINK ('VGET ', 'ZSNGPKEY', 'SHARED ');
CALL ISPLINK ('VGET ', 'ZSNXTGRP', 'SHARED ');

PARSE—Parse a Member for Statistical and Dependency Information
The PARSE service parses a member for statistical and dependency information.
SCLM returns two buffers containing the member’s vital information that you can
pass on to the STORE service. When the STORE service receives this information, it
places it in the member’s accounting record.

Command Invocation Format
You cannot use command procedures to call this service.

NEXTGRP Service

Chapter 2. SCLM Services 73

|
|
|

|
|
|
|
|
|
|
|
|

Call Invocation Format

Parameters
sclm_id

An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters.

group
The group in which the member is to be parsed. The maximum parameter
length is 8 characters. Note that a member can be parsed in any group; the
specified group does not have to be a development library.

type
The type containing the member to be parsed. The maximum parameter length
is 8 characters.

member
The member to be parsed. The maximum parameter length is 8 characters.

language
The language used to identify the parser that will be invoked for the member.
The maximum parameter length is 8 characters.

Y|N
Y indicates that parser listings are to be copied to the ddname parameter only
if parser errors occur. N indicates that all parser listings are to be copied to the
ddname. The maximum parameter length is 24 characters.

If the parser for the specified language does not produce a listing, specify Y.
(The language parsers supplied by SCLM do not produce a listing.) If the
parser for the specified language does produce a listing, specify either value.
For more efficient performance, specify Y. Project-specific parsers can produce
a listing.

ddname
The ddname indicating the destination of the parser listings. If you specify a
blank ddname, SCLM does not generate parser listings. The maximum
parameter length is 8 characters.

If the parser for the specified language does not produce a listing, you should
specify a blank ddname. The parsers supplied by SCLM do not produce a

lastrc := FLMLNK('PARSE ',sclm_id

,group

,type

,member

,language

,{Y|N}

,ddname

,$stats_info

,$list_info

,$msg_array);

PARSE Service

74 z/OS V1R2.0 ISPF SCLM Reference

listing. If the parser for the specified language does produce a listing and you
specify a ddname, allocate the ddname with the attributes the parser requires.
Project-specific parsers can produce a listing.

$stats_info
An output parameter pointing to a record containing the member’s statistical
information derived from parsing the member. See “$stats_info” on page 15 for
more details.

$list_info
An output parameter pointing to an array of records that contains the
member’s include, change code, and user entry information derived from
parsing the member. See “$list_info” on page 15 for more details.

$msg_array
An output parameter pointing to the message array. See “$msg_array” on
page 13 for more details.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD processor. See “SCLM
Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. A parser error occurred.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Example
This example calls the PARSE service.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call parses the FLM01MD2 member of the SOURCE type in the USER1
group. The sclm_id contains a valid SCLM ID returned from the INIT service.
SCLM uses the PASCAL parser and copies the parser listings to the PARSEDD
ddname only if errors occur. You must allocate the PARSEDD ddname before you

lastrc := FLMLNK('PARSE ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD2', (* member *)
'PASCAL ', (* language *)
'Y ', (* listings *)
'PARSEDD ', (* ddname of listings *)
$stats_info, (* statistical information pointer *)
$list_info, (* list information pointer *)
$msg_array); (* message array pointer *)

PARSE Service

Chapter 2. SCLM Services 75

|
|

call FLMLNK. SCLM returns the parse results in the $stats_info and $list_info
parameters and all messages in the $msg_array parameter.

PROMOTE—Promote a Member from One Library to Another
The PROMOTE service moves data, that is, promotes data through the project
database according to a project’s architecture definition and project definition.
Before SCLM can promote a member, it must have a blank access key and must
have successfully completed the BUILD service. If a member has an access key,
you must call the UNLOCK service to reset the access key before you can promote
the member.

Command Invocation Format

Call Invocation Format
lastrc := FLMLNK('PROMOTE ',sclm_id

,group,type,member

,{userid│' '}

,{E|N|S}

FLMCMD PROMOTE,project

,[prj_def]

,group

,type

,member

,[userid]

,[E|N|S]

,[C|U|R]

,[dd_prommsgs]

,[dd_promrept]

,[dd_promexit]

,[dd_copyerr]

,[error_list]

,[create_rept]

,[prefix_userid]

,[dd_bldmsgs]

,[dd_bldlist]

,[dd_bldrept]

,[dd_bldexitr]

PARSE Service

76 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

,{C|U|R}

[,dd_prommsgs[,dd_promrept

[,dd_promexit[,dd_copyerr,

[,{Y|N}

[,{Y|N}

[,{prefix_userid|' '}

[,dd_bldmsgs

[,dd_bldrept

[,dd_bldlist

[,dd_bldexit]]]]]]]]]]]);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name to be used for the promote. It defaults to project.
The maximum parameter length is 8 characters. This parameter is used for
FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group the promote occurs from. The maximum parameter length is 8
characters.

type
The type containing the member to be promoted. The maximum parameter
length is 8 characters.

member
The name of the architecture member or source member to be promoted. The
maximum parameter length is 8 characters.

userid
The user ID of the person requesting the promote. If no value is specified for
FLMCMD or a blank (’ ’) is specified for FLMLNK, it defaults to your TSO
prefix or user ID if no TSO prefix has been created. The maximum parameter
length is 8 characters.

E|N|S
Indicates the promote scope (E=extended, N=normal, S=subunit). The
maximum parameter length is 24 characters. The default value for FLMCMD is
N. There is no default value for FLMLNK.

C|R|U
Indicates the promote mode (C=conditional, R=Report, U=Unconditional). The
maximum parameter length is 24 characters. The default value for FLMCMD is
C. There is no default value for FLMLNK.

PROMOTE Service

Chapter 2. SCLM Services 77

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

dd_prommsgs (optional)
The ddname indicating the destination of the promote messages. If you specify
a blank ddname, SCLM routes the promote messages to the default output
device, such as your terminal. Otherwise, before you call the PROMOTE
service, you must allocate the ddname. The following attributes should be
used: DISP=MOD, RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter
length is 8 characters.

dd_promrept (optional)
The ddname indicating the destination of the promote report. If you specify a
blank ddname, SCLM routes the promote report to the default output device,
such as your terminal. Otherwise, before you call the PROMOTE service, you
must allocate the ddname. The following attributes should be used: RECFM=FBA,
LRECL=80, BLKSIZE=3120. The maximum parameter length is 8 characters.

dd_promexit (optional)
The ddname indicating the destination of the promote user exit data. Specify
this parameter only if your project administrator defined a promote user exit
routine in your project definition. Ask your project manager if your project is
using a promote user exit routine. If you specify a blank ddname, SCLM routes
the promote user exit data to NULLFILE. Otherwise, before you call the
PROMOTE service, you must allocate the ddname. The following attributes
should be used: RECFM=FB, LRECL=160, BLKSIZE=3200. The maximum parameter
length is 8 characters.

dd_copyerr (optional)
The ddname indicating the destination of the promote copy error information.
The promote copy error information consists of system messages indicating the
cause of copy errors during promote processing.

If you specify a blank ddname, SCLM routes the promote copy error
information to the default output device, such as your terminal. Otherwise,
before you call the PROMOTE service, you must allocate the ddname. The
maximum parameter length is 8 characters.

Note: The remaining parameters are applicable only if the project has a
language with rebuild on promote specified (an FLMLRBLD statement).

Y|N (optional)
Y indicates that build translator listings are to be copied to the dd_bldlist
ddname only if errors occur. N indicates that all translator listings are to be
copied to the dd_bldlist ddname. For FLMCMD, the default is Y. There is no
default for FLMLNK. The maximum parameter length is 24 characters. This
parameter only applies if the project definition requests automatic rebuild
when a member is promoted into the ’to group’.

Y|N (optional)
Y indicates that a build report is to be produced and routed to the bldrept
ddname. N indicates that a build report is not to be produced. For FLMCMD,
the default is Y. There is no default for FLMLNK. The maximum parameter
length is 24 characters. This parameter only applies if the project definition
requests automatic rebuild when a member is promoted into the ’to group’.

prefix_userid (optional)
This is the data set name prefix to be used when locating and cataloging
temporary data sets. If no value is specified for FLMCMD or a blank (’ ’) is
specified for FLMLNK, it defaults to the user Id parameter. The maximum

PROMOTE Service

78 z/OS V1R2.0 ISPF SCLM Reference

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

parameter length is 17 characters. This parameter only applies if the project
definition requests automatic rebuild when a member is promoted into the ’to
group’.

dd_bldmsgs (optional)
This is the ddname indicating the destination of the build messages. If you
specify a blank ddname, SCLM routes the build messages to the default output
device, such as your terminal. Otherwise, before you call the BUILD service,
you must allocate the ddname. The following attributes should be used:
RECFM=F, LRECL=80, BLKSIZE=80. You cannot specify a blank ddname for
FLMLNK. This parameter only applies if the project definition requests
automatic rebuild when a member is promoted into the ’to group’. The
maximum parameter length is 8 characters.

dd_bldrept (optional)
This is the ddname indicating the destination of the build report. If you specify
a blank ddname, SCLM routes the build report to the default output device,
such as your terminal. Otherwise, before you call the BUILD service, you must
allocate the ddname. The following attributes should be used: RECFM=FBA,
LRECL=80, BLKSIZE=3120. The maximum parameter length is 8 characters.
This parameter only applies if the project definition requests automatic rebuild
when a member is promoted into the ’to group’.

dd_bldlist (optional)
This is the ddname indicating the destination of the build listings. If you
specify a blank ddname, SCLM does not generate the build listings. Otherwise,
before you call the BUILD service, you must allocate the ddname. The
following attributes should be used: DISP=MOD, RECFM=VBA, LRECL=137,
BLKSIZE=3120. The maximum parameter length is 8 characters. This parameter
only applies if the project definition requests automatic rebuild when a
member is promoted into the ’to group’.

dd_bldexit (optional)
This is the ddname indicating the destination of the build user exit data.
Specify this parameter only if your project definition defines a build user exit
routine. Ask your project manager if your project is using a build user exit
routine. If you specify a blank ddname, SCLM routes the build user exit data
to NULLFILE. Otherwise, before you call the BUILD service you must allocate
the ddname. The following attributes should be used: RECFM=FB, LRECL=160,
BLKSIZE=3200. The maximum parameter length is 8 characters. This parameter
only applies if the project definition requests automatic rebuild when a
member is promoted into the ’to group’.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information. The
location of the messages file is determined by the dd_prommsgs parameter.

8 Error condition. See the SCLM messages for more information.

PROMOTE Service

Chapter 2. SCLM Services 79

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

10 Promote completed successfully. Build was requested in the project
definition, but the build failed. See the build messages file allocated to the
dd_bldmsgs parameter for more information.

12 Severe error condition. SCLM does not produce messages because there
was an error invoking the promote module.

16 Severe error condition. SCLM does not produce messages because SCLM
cannot retrieve SCLM ID information.

Examples
These examples call the PROMOTE service.

Command Invocation

This service command promotes the FLM01CMD member of the ARCHDEF type
and all of its dependent members from the USER1 group to the next group in the
hierarchy. The project name is PROJ1. The promote scope is normal (by default)
and the promote mode is unconditional. SCLM sends messages, reports, and
listings to the terminal.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call performs a report-only promote on the FLM01CMD member of
the ARCHDEF type in the USER1 group. The sclm_id parameter contains a valid
SCLM ID returned from the INIT service and USERID identifies who is requesting
the promote. The promote scope is extended. You must allocate the ddnames
(PROMMSGS, PROMREPT, PROMEXIT, and COPYDD, respectively) before you
call FLMLNK.

RPTARCH—Generate an SCLM Architecture Report
The RPTARCH service provides a list of all the components in a given application.
The report generator examines the requested architecture and all of its references,
and then constructs an indented report of the architecture. The report lists software
components in each type referenced by the architecture to help you eliminate
unnecessary code.

FLMCMD PROMOTE,PROJ1,,USER1,ARCHDEF,FLM01CMD,,,U

lastrc := FLMLNK('PROMOTE ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'ARCHDEF ', (* type *)
'FLM01CMD', (* member *)
' ', (* user ID *)
'E ', (* scope *)
'R ', (* mode *)
'PROMMSGS', (* messages *)
'PROMREPT', (* report *)
'PROMEXIT', (* user exit data *)
'COPYDD '); (* copy errors *)

PROMOTE Service

80 z/OS V1R2.0 ISPF SCLM Reference

||
|
|

Command Invocation Format

Call Invocation Format
You cannot use call procedures to start this service.

Parameters
project

The project name. The maximum parameter length is 8 characters.

prj_def
The project definition name to be used for generating the architecture report. It
defaults to project. The maximum parameter length is 8 characters.

group
The group the report is to be generated from. The maximum parameter length
is 8 characters. If information is not found at the specified group, RPTARCH
searches up the hierarchy to the next layer.

type
The type containing the member to be reported on. The maximum parameter
length is 8 characters.

member
The member to be reported on. The maximum parameter length is 8 characters.

HL|LEC|CC|GEN|TOP SOURCE|NONE
Indicates the cutoff (determines depth) for the architecture report.

The architecture report contains the following if you specify:

HL
The HL architecture members in the application represented by the
architecture member you specified with the member parameter.

LEC
The HL and LEC architecture members in the application represented by
the architecture member you specified with the member parameter.

CC
The HL, LEC, and CC architecture members in the application represented
by the architecture member you specified with the member parameter.

GEN
The HL and generic architecture members in the application represented
by the architecture member you specified with the member parameter.

TOP SOURCE
The HL, LEC, CC, and generic architecture members and top source

FLMCMD RPTARCH,project,[prj_def]

,group

,type

,member

,[HL|LEC|CC|GEN|TOP SOURCE|NONE]

,dd_rptmsgs

,dd_rptrept

RPTARCH Service

Chapter 2. SCLM Services 81

members in the application represented by the architecture member you
specified with the member parameter.

NONE
The HL, LEC, CC, and generic architecture members in each of the types
and all source members down to the lowest include group in the
application represented by the architecture member you specified with the
member parameter.

The maximum parameter length is 24 characters. The default value is NONE.

dd_rptmsgs
The ddname indicating the destination of the RPTARCH service messages. If
you specify a blank ddname, SCLM routes the RPTARCH service messages to
the default output device, such as your terminal. Otherwise, before you call the
RPTARCH service, you must allocate the ddname; the following attributes
should be used: RECFM=F, LRECL=80, BLKSIZE=80. The maximum parameter
length is 8 characters.

dd_rptrept
The ddname indicating the destination of the architecture report. If you specify
a blank ddname, SCLM routes the architecture report to the default output
device, such as your terminal. Otherwise, before you call the RPTARCH
service, you must allocate the ddname; the following attributes should be used:
RECFM=FBA, LRECL=80, BLKSIZE=3120. The maximum parameter length is 8
characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD processor. See “SCLM
Service Return Codes” on page 20 for more information about these.

Possible return codes are:

0 Normal completion. See the SCLM messages for more information.

4 Warning condition. See the SCLM messages for more information.

8 Error condition. See the SCLM messages for more information.

Example
This example calls the RPTARCH service.

Command Invocation

This service command generates an architecture report for the FLM01MD1 member
of the SOURCE type in the USER1 group. The project name is PROJ1. The report
cutoff is NONE, and SCLM sends messages and the architecture report to your
terminal.

FLMCMD RPTARCH,PROJ1,,USER1,SOURCE,FLM01MD1,NONE

RPTARCH Service

82 z/OS V1R2.0 ISPF SCLM Reference

|
|

SAVE—Lock, Parse, and Store a Member
The SAVE service locks and parses a member, and stores that member’s statistical,
dependency, and historical information all in one service call. The SAVE service
calls the LOCK, PARSE, and STORE services.

Note: The SAVE service does not parse a member correctly if the member is
packed. Make sure that the pack mode is off in the member’s profile.

Before you start the SAVE service, the member must exist in the development
library you specify. (The LOCK, SAVE, or STORE service can be complete for the
member, but this is not necessary.) Upon completion of the SAVE service, the
member has been locked and its access key has been set. (You must supply the
correct access key for previously locked members.) A typical development scenario
follows:
1. Update or create the member.
2. Start the SAVE service to parse the member and store the member’s statistical,

dependency, and historical information.

For more information on the LOCK, PARSE, and STORE services, see their service
descriptions in this chapter.

Note: Use of the SAVE service causes SCLM to delete all previously-stored
$list_info data from the member’s dependency and historical information.
Each invocation of the SAVE service creates a new set of statistical,
dependency, and historical information for the member.

If you need pre-existing historical information, such as user entry data, do not
invoke the SAVE service. Use the LOCK, PARSE, and STORE services instead.

Command Invocation Format
FLMCMD SAVE,project,[prj_def]

,group,type,member

,[authcode],[access_key]

,[userid],[language]

,[Y|N]

,[ddname],[C|U]

,[C|U]

,[change_code]

Call Invocation Format
lastrc := FLMLNK('SAVE ',sclm_id

,group,type,member

,authcode,access_key

,{userid|' '},language

,{Y|N}

SAVE Service

Chapter 2. SCLM Services 83

,ddname

,{C|U}

,{C|U}

,{Y|N}

,$list_info

,max_prom_group

,$msg_array);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name to be used for the lock, parse, and store. It defaults
to the project parameter. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The SCLM
ID is generated by the INIT service. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group in which the lock, parse, and store are to occur. The specified group
must be a development library. The maximum parameter length is 8 characters.

type
The type containing the member. The maximum parameter length is 8
characters.

member
The member to be locked and parsed, and whose accounting information is to
be stored. The maximum parameter length is 8 characters.

authcode
The authorization code to be used for the lock. If you do not supply an
authcode, SCLM uses default values as follows:
v The authorization code from the existing member if the member being

locked exists in the hierarchy
v The default authorization code for the group if the member does not exist in

the hierarchy.

The maximum parameter length is 8 characters.

access_key
The access key to be assigned to the member. The access key is required for
any further manipulation of the member until you use the UNLOCK service to
remove the access key. It defaults to blank. The maximum parameter length is
16 characters.

userid
User ID of the person requesting the SAVE service. It defaults to the current
system user ID. The maximum parameter length is 8 characters.

SAVE Service

84 z/OS V1R2.0 ISPF SCLM Reference

language
The language of the member. The maximum parameter length is 8 characters.
You must specify the language the first time you save a member; after that a
language name is optional. If not specified, the language will default to the
language already defined for the member. Specify a different language name if
you wish to change the name of the language defined for the member. Parsers
will be called based on the current value specified.

Y|N
Y indicates that SCLM is to copy parser listings to the ddname parameter only
if parser errors occur. N indicates that SCLM is to copy all parser listings to the
ddname. The maximum parameter length is 24 characters.

If the parser for the specified language does not produce a listing, specify Y.
The language parsers supplied by SCLM do not produce a listing. If the parser
for the specified language does produce a listing, you can specify either value.
For more efficient performance, specify Y. Project-specific parsers can produce
a listing. The default value for FLMCMD is Y. There is no default value for
FLMLNK.

ddname
The ddname indicating the destination of the parser listings. If you specify a
blank ddname, SCLM does not generate the parser listings. The maximum
parameter length is 8 characters.

If the parser for the specified language does not produce a listing, specify a
blank ddname. The language parsers supplied by SCLM do not produce a
listing. If the parser for the specified language does produce a listing and you
specified a ddname, allocate the ddname with the attributes required by the
parser. Project-specific parsers can produce a listing.

C|U
Specify C to indicate that the member’s statistical and dependency information
is not to be saved in the event of a parser error; that is, the STORE service is
not to be called if the PARSE service completes with a return code of 4. Specify
U to indicate that the member’s statistical and dependency information is to be
saved even in the event of a parser error. The maximum parameter length is 24
characters. The default value for FLMCMD is C. There is no default value for
FLMLNK.

C|U
Specify C to indicate that a compilation unit cannot be drawn down into a
different member. Specify U to indicate that a compilation unit can be drawn
down into a different member. The maximum parameter length is 24
characters. The default value for FLMCMD is C. There is no default value for
FLMLNK.

change_code
A change_code to be added to the information obtained by parsing the
member. If the member’s accounting record lists the change_code, SCLM
updates the date and time stamps for the existing change_code entry. The
maximum parameter length is 8 characters. This parameter is used for
FLMCMD only.

Y|N
Y tells SCLM to verify change code records appearing in $list_info with the
change code verification routine specified in the project definition. N tells
SCLM not to verify change code records. The maximum parameter length is 24
characters.

SAVE Service

Chapter 2. SCLM Services 85

This parameter is only valid for the FLMLNK call invocation. SCLM always
verifies change_code records for the FLMCMD command format.

Specify N if your project definition does not specify a change_code verification
routine. Ask your project manager if your project is using a change_code
verification routine.

$list_info
An input or output parameter pointing to an array of records that contains
change_code information. SCLM adds any change codes appearing in the array
to the information it obtains by parsing the member. If you are not adding
change_code information to the parser information, SCLM can pass a fullword
zero buffer address. The array contains only change_code records.

SCLM deletes all information associated with the member (such as user entry
data) previously stored through the STORE service with the $list_info
parameter.

SCLM ignores the Date and Time Stamp fields on all change_code entries in
the $list_info array. The SAVE service assigns the last change date and time
from the member’s accounting record to all change_codes it finds in the array.
Note that SCLM does not update the array itself.

SCLM adds all change_code data listed in $list_info to the existing
change_code data in the member’s accounting record. If the member’s
accounting record already lists the change_code, SCLM updates the date and
time stamps for the existing change_code entry.

This parameter is used for FLMLNK only. See “Pointer Parameters” on page 13
for more details on $list_info.

max_prom_group
An output parameter indicating the highest group in the hierarchy to which
the member can be promoted. Based on the authorization code you used for
the lock, SCLM determines the highest group that you can promote this
member to. The maximum parameter length is 8 characters. This parameter is
used for FLMLNK only.

$msg_array
An output parameter pointing to the message array. See “$msg_array” on
page 13 for more details. This parameter is used for FLMLNK only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. The $msg_array parameter determines the location of
this message array.

8 Error condition. The $msg_array parameter determines the location of this
message array.

SAVE Service

86 z/OS V1R2.0 ISPF SCLM Reference

|
|

Examples
These examples call the SAVE service.

Command Invocation

This service command locks, parses, and stores the information for the member
FLM01MD1 of the type SOURCE in the USER1 group. The project name is PROJ1
and the access key is XXX#05. Change code CC001234 is to be added to the
information obtained by parsing the member with the PASCAL parser. All other
parameters are default values.

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call locks, parses, and stores the information for member FLM01MD1
of the SOURCE type in the USER1 group. The sclm_id parameter contains a valid
SCLM ID returned from the INIT service. The authorization code to be used for
the lock verification is TESTAC and the access key is XXX#05. The PASCAL parser
parses the member.

SCLM copies parser listings to the PARSEDD ddname only if errors occur. If a
parser error does occur, the STORE still completes, SCLM does not draw down
compilation units into a different member, and the service verifies all çs found in
$list_info. SCLM returns all messages produced in the $msg_array parameter. You
must allocate the PARSEDD ddname before you call FLMLNK.

START—Generate an Application ID for a Services Session
The START service initializes an SCLM services session. It generates an application
ID that identifies the services session. You can use the application ID to call the
INIT service to initialize an SCLM ID. Each START service invocation needs a
matching END service invocation.

FLMCMD SAVE,PROJ1,,USER1,SOURCE,FLM01MD1,,XXX#05,,PASCAL,,,,,CC001234

$list_info := NIL; (* Sets the buffer address to X'00000000' *)

lastrc := FLMLNK('SAVE ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD1', (* member *)
'TESTAC ', (* authorization code *)
'XXX#05 ', (* access key *)
' ', (* user ID *)
'PASCAL ', (* language *)
'Y ', (* listings *)
'PARSEDD ', (* ddname of listings *)
'U ', (* statistical and dependency info *)
'C ', (* compilation unit *)
'Y ', (* change codes *)
$list_info, (* list information pointer *)
max_prom_group, (* maximum promotable group *)
$msg_array); (* message array pointer *)

SAVE Service

Chapter 2. SCLM Services 87

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format

Parameters
appl_id

The generated application ID identifying the SCLM services session. Each time
you invoke the START service, SCLM generates a unique application ID in this
output parameter. The maximum parameter length is 8 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor. See “SCLM
Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

12 Severe error condition. The maximum application ID limit was exceeded.

16 Severe error condition. An invalid version of the SCLM table was loaded.

20 Severe error condition. An invalid version of the National Language
Support (NLS) table was loaded.

24 Severe error condition. SCLM is unable to load the SCLM table.

28 Severe error condition. SCLM is unable to load the NLS table or the SCLM
I/O load module.

32 Severe error condition. An invalid parameter list was passed to the
requested service.

34 Severe error condition. An invalid service was requested.

36 Severe error condition. The version of the FLMLNK subroutine does not
match the version of the SCLM services module.

Example
This example calls the START service.

Call Invocation

Note: This example shows a general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call initializes an SCLM services session.

lastrc := FLMLNK('START ', appl_id);

lastrc := FLMLNK('START ', (* service *)
appl_id); (* application ID *)

START Service

88 z/OS V1R2.0 ISPF SCLM Reference

|
|

STORE—Store Member Information in an Accounting Record
The STORE service saves a member’s statistical, dependency, and historical
information in an accounting record in the project database. SCLM usually obtains
statistical and dependency information by parsing the member, and it is a required
input to the STORE service. SCLM retains the historical information in the project
database and automatically generates it for the member.

Before you call the STORE service, you must lock the member using the LOCK
service, and the member must exist in the development library you specify. After
the STORE service ends, the member remains locked and the access key also
remains unchanged. A typical development scenario follows:
1. Use the LOCK service to lock the member. The member may or may not yet

exist.
2. Update or create the member.
3. Parse the member using the PARSE service.
4. Save the member’s statistical, dependency, and historical information using the

STORE service.

The STORE service removes duplicate dependency information for each member.
For example, if a member is referenced as an include ten times, the STORE service
records the reference only once in the accounting information.

When the STORE service receives dependency information, it replaces the existing
dependency information rather than appending to it.

Change code information can relate problem report (PR) numbers, change request
(CR) numbers, and other information to individual source members. The STORE
service can validate change codes you input to the STORE service before it enters
them into the accounting records and saves the member.

Like dependency information, all existing user data entries are replaced with the
new user data the STORE service receives. User data entries are stored directly into
the accounting information for the member. Duplicate entries passed to the STORE
service are preserved in the accounting information.

Command Invocation Format
You cannot use command procedures to call this service.

Call Invocation Format
lastrc := FLMLNK('STORE ',sclm_id

,group,type,member

,access_key

,language

,{userid|' '}

,{C|U}

,{Y|N}

,$stats_info,$list_info

,$msg_array);

STORE Service

Chapter 2. SCLM Services 89

Parameters
sclm_id

An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters.

group
The group in which the store is to occur. The specified group must be a
development library. The maximum parameter length is 8 characters.

type
The type containing the member whose information is to be stored. The
maximum parameter length is 8 characters.

member
The member whose information is to be stored. The maximum parameter
length is 8 characters.

access_key
The access key assigned to the member with the LOCK service. If you supply
an incorrect access key, the service fails. The maximum parameter length is 16
characters.

language
The language of the member. If you used the PARSE service to parse the
member, this language should be the same as the one specified as input to the
PARSE service. The maximum parameter length is 8 characters. However, if the
language is different, you can generate your own $stats_info and write an
accounting record. You can also use the statistics retrieved from the PARSE
service, and it will create a new accounting record with the updated
information.

userid
The user ID of the person requesting the STORE service. It defaults to the
current system user ID. The maximum parameter length is 8 characters.

C|U
C indicates conditional; SCLM does not draw down a compilation unit into a
different member. U indicates unconditional; SCLM can draw down a
compilation unit into a different member. The maximum parameter length is 24
characters.

Y|N
Y tells SCLM to verify change code records appearing in $list_info with the
change code verification routine specified in the project definition. N tells
SCLM not to verify change code records. The maximum parameter length is 24
characters.

Ask your project manager if your project is using a change code verification
routine. If it is not, specify N.

$stats_info
A pointer to a record containing the member’s statistical information. You must
have a valid buffer address.

Note: If you used the PARSE service to generate the record, you must copy the
buffer to the calling program’s local storage before calling the STORE
service. Failure to copy the buffer to local storage causes unpredictable
results.

STORE Service

90 z/OS V1R2.0 ISPF SCLM Reference

See “Pointer Parameters” on page 13 for more details on the $stats_info
parameter and copying the record contents.

$list_info
A pointer to an array of records that contains the member’s include, change
code and user entry information. If the member has none of this information,
you can pass a fullword zero buffer address.

All include and user entry information data listed in $list_info replaces existing
accounting record data for the member. If you want to maintain existing
information (such as user entry history) for the member, it must appear in the
$list_info parameter.

SCLM ignores the Date and Time Stamp fields on all change code entries in
the $list_info array. The STORE service assigns the current system date and
time to all change codes it finds in the array. Note that SCLM does not update
the array itself.

SCLM adds all change code data listed in $list_info to the existing change code
information in the member’s accounting record. If the change code is already
listed in the member’s accounting record, SCLM updates the date and time
stamps for the existing change code entry.

The order of the include entries in $list_info determine the order in which the
build function processes the member’s dependencies.

Note that SCLM does not permit duplicate record entries in the $list_info array.
If it encounters duplicate records, it flags an error.

Note: If you used the PARSE service to generate the array, you must copy the
buffer to the calling program’s local storage before you call the STORE
service. Failure to copy the buffer to local storage causes unpredictable
results. See “Pointer Parameters” on page 13 for more information on the
$list_info parameter and copying the array contents.

$msg_array
An output parameter pointing to the message array. See “Pointer Parameters”
on page 13 for more information on $msg_array.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMLNK processor. See “SCLM
Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. The $msg_array parameter determines the location of
this message array.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Example
This example calls the STORE service.

STORE Service

Chapter 2. SCLM Services 91

|
|

Call Invocation

Note: This example shows general syntax. Call invocations are language-specific.
See “Chapter 3. Sample Programs Using SCLM Services” on page 105 for
specific examples.

This service call stores the statistical and dependency information (obtained from
$stats_info and $list_info) in member FLM01MD2’s accounting record in the project
database. The sclm_id parameter contains a valid SCLM ID returned from the INIT
service.

The member FLM01MD2 must exist in the SOURCE type in the USER1 group and
must have previously been locked with an access key of XXX#04. The member is
identified as a PASCAL member.

SCLM does not draw down compilation units into a different member and it
verifies all change codes found in $list_info. SCLM returns all messages in the
$msg_array array.

UNLOCK—Unlock a Member in a Development Library
The UNLOCK service makes a locked member available for updates by another
user. If an access key was assigned to the member when it was locked, the
UNLOCK service resets the access key to blank.

If SAVE or STORE completes successfully for a member and that member has an
access key, you can reset the access key by calling the UNLOCK service.

Before you can promote a member, you must call the UNLOCK service to remove
its access key. The PROMOTE service does not promote any member that has an
access key. For more information on the LOCK service and access keys, see
“LOCK—Lock a Member or Assign an Access Key” on page 63.

lastrc := FLMLNK('STORE ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD2', (* member *)
'XXX#04 ', (* access key *)
'PASCAL ', (* language *)
' ', (* user ID *)
'C ', (* compilation unit *)
'Y ', (* change codes *)
$stats_info, (* statistical information pointer *)
$list_info, (* listing information pointer *)
$msg_array); (* message array pointer *)

STORE Service

92 z/OS V1R2.0 ISPF SCLM Reference

Command Invocation Format

Call Invocation Format

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name to be used for the unlock. It defaults to project.
The maximum parameter length is 8 characters. This parameter is used for
FLMCMD only.

sclm_id
An SCLM ID associated with a given project and project definition. The INIT
service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group
The group in which the member is to be unlocked. The specified group must
be a development library. The maximum parameter length is 8 characters.

type
The type containing the member to be unlocked. The maximum parameter
length is 8 characters.

member
The member to be unlocked. The maximum parameter length is 8 characters.

access_key
The access key assigned (with the LOCK or SAVE service) to the member. If
you supply an incorrect access key, the unlock fails. The maximum parameter
length is 16 characters.

FLMCMD UNLOCK,project

,[prj_def]

,group

,type

,member

,[access_key]

lastrc := FLMLNK('UNLOCK ',sclm_id

,group

,type

,member

,{access_key|' '}

,$msg_array);

UNLOCK Service

Chapter 2. SCLM Services 93

For the FLMCMD format, the default is blank. For the FLMLNK format, you
MUST specify an access key parameter. If you do not want to specify an access
key on the FLMLNK, you must pass blanks as the parameter value.

$msg_array
An output parameter pointing to the message array. See “$msg_array” on
page 13 for more details on $msg_array. This parameter is used for FLMLNK
only.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion.

4 Warning condition. The $msg_array parameter determines the location of
this message array.

8 Error condition. The $msg_array parameter contains the error message
associated with this condition.

Examples
These examples call the UNLOCK service.

Command Invocation

This service command unlocks the FLM01MD1 member of the SOURCE type in
the USER1 group. The project name is PROJ1. The access key value for the member
is XXX#05.

Call Invocation
This example shows general syntax. Call invocations are language-specific. See
“Chapter 3. Sample Programs Using SCLM Services” on page 105 for
language-specific examples.

This service call unlocks the FLM01MD1 member of the SOURCE type in the
USER1 group. The sclm_id parameter contains a valid SCLM ID returned from the
INIT service. The access key value for the member is XXX#05. SCLM returns all
messages in the $msg_array parameter.

FLMCMD UNLOCK,PROJ1,,USER1,SOURCE,FLM01MD1,XXX#05

lastrc := FLMLNK('UNLOCK ', (* service *)
sclm_id, (* SCLM ID *)
'USER1 ', (* group *)
'SOURCE ', (* type *)
'FLM01MD1', (* member *)
'XXX#05 ', (* access key *)
$msg_array); (* message array pointer *)

UNLOCK Service

94 z/OS V1R2.0 ISPF SCLM Reference

|
|

VERDEL—Delete Version and Audit Information
The VERDEL service deletes the information about a versioned or audited member
from SCLM. The information is deleted from the auditing data set defined in the
project definition and from the versioning PDS associated with the audit record, if
it exists. The partitioned data set used for storing the versions is also updated for
deletion of the version. The date and time specified to the service must exactly
match the date and time of the audit and version information to delete. Use the
VERINFO service to obtain the dates and times of audit and version information.

Command Invocation Format
FLMCMD VERDEL,project

,[prj_def]

,group

,type

,member

,date

,time

,[dd_msgs]

,[longdate]

Call Invocation Format
lastrc := FLMLNK('VERDEL ',sclm_id,

,group

,type

,member

,date

,time

,$msg_array

[,longdate]);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name. It defaults to the project name. The maximum
parameter length is 8 characters. This parameter is used for FLMCMD
only.

sclm_id
An SCLM ID associated with a given project and project definition. The
INIT service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

VERDEL Service

Chapter 2. SCLM Services 95

group The group associated with the version or audit record. The maximum
parameter length is 8 characters.

type The type associated with the version or audit record. The maximum
parameter length is 8 characters.

member
The member that has the version or audit record. The maximum parameter
length is 8 characters.

date The date of the version or audit record. The date must be specified in the
format given in the ZDATEF ISPF variable. Either the date or the longdate
parameter is required. If both are given, the date parameter is used. The
length of this parameter is 8 characters.

time The time of the version or audit record. The format for the time is
HH:MM:SS.hh or HH:MM:SS,hh where HH is the hour from a 24 hour
clock, MM is the minute, SS is the seconds and hh is the hundreths of
seconds. The length of this parameter is 11 characters.

dd_msgs
The ddname indicating the destination of the messages generated by the
VERDEL service. If you specify a blank ddname, SCLM routes the
VERDEL messages to the default output device, such as your terminal.
Otherwise, before you call the VERDEL service, you must allocate the
ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

$msg_array
An output parameter pointing to the message array. See “Pointer
Parameters” on page 13 for more information on $msg_array. This
parameter is used for FLMLNK only.

longdate
The date of the version or audit record. The longdate, with a 4-character
year, must be specified in the national language format. Either the date or
the longdate parameter is required. If both are given, the date parameter is
used. The length of this parameter is 10 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. The audit and version information were deleted.

8 Error completion. No audit and version information was deleted. No audit
record was found that matches the specified criteria.

12 Error completion. Refer to the messages for more information.

VERDEL Service

96 z/OS V1R2.0 ISPF SCLM Reference

|
|

VERINFO—Retrieve Version and Audit Information
The VERINFO service retrieves the information about a versioned or audited
member into ISPF variables and tables. The service can search a group for the next
or previous matching audit record, or retrieve a specific audit record. See “ISPF
Variables” on page 17 for a list of the variables updated by this service.

Command Invocation Format
FLMCMD VERINFO,project

,[prj_def]

,group

,type

,member

,[date]

,[time]

,[user_info_table]

,[include_table]

,[change_code_table]

,[ada_cu_table]

,[FORWARD│BACKWARD│MATCH]

,[dd_msgs]

,[longdate]

Call Invocation Format
lastrc := FLMLNK('VERINFO ',sclm_id,

,group
,type
,member
,date
,time
,user_info_table
,include_table
,change_code_table
,ada_cu_table
,FORWARD│BACKWARD│MATCH
,$msg_array
[,longdate]);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name. It defaults to the project name. The maximum
parameter length is 8 characters. This parameter is used for FLMCMD
only.

VERINFO Service

Chapter 2. SCLM Services 97

sclm_id
An SCLM ID associated with a given project and project definition. The
INIT service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group The group associated with the version or audit record. The maximum
parameter length is 8 characters.

type The type associated with the version or audit record. The maximum
parameter length is 8 characters.

member
The member that has the version or audit record. The maximum parameter
length is 8 characters.

date The date of the version or audit record. If omitted or specified as blanks
the longdate is used. If both the date and longdate are omitted or specified
as blanks, the date will default to 00/00/00. The date must be specified in
the format given in the ZDATEF ISPF variable. The length of this
parameter is 8 characters.

time The time of the version or audit record. If omitted or specified as blanks
the time will default to 00:00:00.00. The format for the time is
HH:MM:SS.hh or HH:MM:SS,hh where HH is the hour from a 24 hour
clock, MM is the minute, SS is the seconds and hh is the hundreths of
seconds. The length of this parameter is 11 characters.

user_info_table
The name of the ISPF table to contain the user entries from the audit
record. The table must be open prior to calling the VERINFO service. A
TBADD will be performed for each user entry in the audit record. The
maximum parameter length is 8 characters. The following ISPF variables
must be used in the table definition in order to have their value stored in
the table:
v ZSUNUM - the user entry number
v ZSUENTRY - the user entry data

include_table
The name of the ISPF table to contain the includes from the audit record.
The table must be open prior to calling the VERINFO service. A TBADD
will be performed for each include in the audit record. The maximum
parameter length is 8 characters. The following ISPF variables must be
used in the table definition in order to have their value stored in the table:
v ZSIMBR - the include member name
v ZSIISET - the include set name

change_code_table
The name of the ISPF table to contain the change codes from the audit
record. The table must be open prior to calling the VERINFO service. A
TBADD will be performed for each change code in the audit record. The
maximum parameter length is 8 characters. The following ISPF variables
must be used in the table definition in order to have their value stored in
the table:
v ZSCCODE - the change code
v ZSCDATE - the change code date in 2-character date format
v ZSCDAT4 - the change code date in 4-character date format
v ZSCTIME - the change code time

ada_cu_table
The name of the ISPF table to contain the ADA compilation units from the

VERINFO Service

98 z/OS V1R2.0 ISPF SCLM Reference

|
|

audit record. The table must be open prior to calling the VERINFO service.
A TBADD will be performed for each ADA compilation unit in the audit
record. The maximum parameter length is 8 characters. The following ISPF
variables must be used in the table definition in order to have their value
stored in the table:
v ZSDNAME- the ADA compiliation unit name
v ZSDTYPE - the ADA compilation unit type

FORWARD│BACKWARD│MATCH

FORWARD indicates that if the type name, member name, date, or time do
not exactly match an audit record, the information from the next audit
record for the group is to be returned. This is the default.

BACKWARD indicates that if the type name, member name, date, or time
do not exactly match an audit record, the information from the previous
audit record for the group is to be returned.

MATCH indicates that the type name, member name, date, and time must
exactly match the type name, member name, date, and time in an audit
record.

To retrieve all of the audit records within a group use FORWARD and start
with the type name and member name set to blanks and the date and time
set to all zeros. If an audit record is found increment the last digit of the
time by one before calling the VERINFO service again. Repeat this process
until the service indicates that no record was found.

The maximum parameter length is 8 characters.

dd_msgs
The ddname indicating the destination of the messages generated by the
VERINFO service. If you specify a blank ddname, SCLM routes the
VERINFO messages to the default output device, such as your terminal.
Otherwise, before you call the VERINFO service, you must allocate the
ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

$msg_array
An output parameter pointing to the message array. See “Pointer
Parameters” on page 13 for more information on $msg_array. This
parameter is used for FLMLNK only.

longdate
The date of the version or audit record. If omitted or specified as blanks
the date parameter is used. If both the date and longdate are omitted or
specified as blanks, the date will default to 00/00/00. The longdate must
be specified in the national language format with a 4-character year. The
length of this parameter is 10 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

VERINFO Service

Chapter 2. SCLM Services 99

|
|

0 Normal completion. An audit record exactly matching the specified critieria
was found and the information was stored successfully.

8 Error completion. No audit record was found for the specified member.
v If FORWARD was specified, then there are no audit records for the

group which match or follow the specified type, member, date, and time.
v If BACKWARD was specified, then there are no audit records for the

group which match or precede the specified type, member, date, and
time.

v If MATCH was specified, then there is not an audit record with the
specified group, type, and member name.

12 Error completion. Refer to the messages for more information.

VERRECOV—Recover a Version
The VERRECOV service recovers a version of a member from the version data set.
For retrieval of a member into the hierarchy the information is recovered from the
auditing data set defined in the project definition for the group specified to the
service. The date and time specified to the service must exactly match the date and
time of the audit record with version information to recover. Use the VERINFO
service to obtain the dates and times of audit and version information. The
VERINFO service sets variable ZSVMBR, which tells the name of the version
member. If ZSVMBR is blank after a VERINFO call, then there is an audit record
but no version of the member with this date and time. If ZSVMBR is not blank,
then there is a version to recover.

The recovery can be done to a data set outside of SCLM control by specifying the
to_dataset name parameter. To recover into the SCLM project specify the to_group,
to_type and optionally the authcode. When recovering into SCLM, a lock is first
done to lock the member at the specified group and type. If the lock fails no
recovery will be performed. Either the to_dataset must be specified or the to_group
and to_type must be specified to indicate the location of the recovered member.

Command Invocation Format
FLMCMD VERRECOV,project

,[prj_def]

,group

,type

,member

,date

,time

,[to_dataset]

,[to_group]

,[to_type]

,[authcode]

,[dd_msgs]

,[longdate]

VERINFO Service

100 z/OS V1R2.0 ISPF SCLM Reference

Call Invocation Format
lastrc := FLMLNK('VERRECOV',sclm_id,

,group

,type

,member

,date

,time

,to_dataset

,to_group

,to_type

,authcode

,$msg_array

[,longdate]);

Parameters
project

The project name. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

prj_def
The project definition name. It defaults to the project name. The maximum
parameter length is 8 characters. This parameter is used for FLMCMD
only.

sclm_id
An SCLM ID associated with a given project and project definition. The
INIT service generates the SCLM ID. The maximum parameter length is 8
characters. This parameter is used for FLMLNK only.

group The group associated with the version or audit record. The maximum
parameter length is 8 characters.

type The type associated with the version or audit record. The maximum
parameter length is 8 characters.

member
The member that has the version or audit record. The maximum parameter
length is 8 characters.

date The date of the version or audit record. The date must be specified in the
format given in the ZDATEF ISPF variable. The length of this parameter is
8 characters.

time The time of the version or audit record. The format for the time is
HH:MM:SS.hh or HH:MM:SS,hh where HH is the hour from a 24 hour
clock, MM is the minute, SS is the seconds and hh is the hundreths of
seconds. The length of this parameter is 11 characters.

to_dataset
The name of the data set to hold the recovered member. The data set must
be a sequential data set or a PDS without the member name specified. The

VERRECOV Service

Chapter 2. SCLM Services 101

data set name must be fully qualified without quotes. If the data set is a
PDS the member name will be the name of the member being recovered. If
this parameter is specified then the to_group and to_type parameters must
not be specified. The maximum parameter length is 44 characters.

to_group
The name of the group to hold the recovered member. The group must be
a development group (lowest level of the hierarchy). This parameter
requires that the to_type also be specified. If this parameter is specified
then the to_dataset must not be specified. The maximum parameter length
is 8 characters.

to_type
The name of the type to hold the recovered member. This parameter
requires that the to_group also be specified. If this parameter is specified
then the to_dataset must not be specified. The maximum parameter length
is 8 characters.

authcode
The authorization code to be used for locking the member in the hierarchy.
The authorization code must be valid for the group specified in the
to_group parameter. If this parameter is not specified and to_group is
specified then SCLM will attempt to lock the member with the
authorization code that is in the audit record. This parameter requires that
the to_group and to_type also be specified. If this parameter is specified
then the to_dataset must not be specified. The maximum parameter length
is 8 characters.

dd_msgs
The ddname indicating the destination of the messages generated by the
VERRECOV service. If you specify a blank ddname, SCLM routes the
VERRECOV messages to the default output device, such as your terminal.
Otherwise, before you call the VERRECOV service, you must allocate the
ddname. The following attributes should be used: RECFM=F, LRECL=80,
BLKSIZE=80. The maximum parameter length is 8 characters. This
parameter is used for FLMCMD only.

$msg_array
An output parameter pointing to the message array. See “Pointer
Parameters” on page 13 for more information on $msg_array. This
parameter is used for FLMLNK only.

longdate
The date of the version or audit record. If omitted or specified as blanks,
the date parameter is used. If both the date and longdate are omitted or
specified as blanks, the date will default to 00/00/00. The longdate, with a
4-character year, must be specified in the national language format. The
length of this parameter is 10 characters.

Return Codes
Additional special services messages are written to the FLMMSGS ddname. See
“SCLM Service Messages” on page 22 for more information.

Other return codes might be produced by the FLMCMD or the FLMLNK
processor. See “SCLM Service Return Codes” on page 20 for more information.

Possible return codes are:

0 Normal completion. The audit and version information were recovered.

VERRECOV Service

102 z/OS V1R2.0 ISPF SCLM Reference

|
|

8 Error completion. No audit and version information was recovered. No
audit record was found that matches the specified criteria.

10 Error completion. No audit and version information was recovered. The
member could not be locked with the specified authorization code.

12 Error completion. Refer to the messages for more information.

VERRECOV Service

Chapter 2. SCLM Services 103

VERRECOV Service

104 z/OS V1R2.0 ISPF SCLM Reference

Chapter 3. Sample Programs Using SCLM Services

This chapter contains the following:
v An example of Pascal program invocations that call the following SCLM services

in this order:
– START
– INIT
– LOCK
– PARSE
– STORE
– BUILD
– FREE
– END

v A PL/I example that illustrates SCLM service procedures.

Command interface examples written in REXX for the Audit and Versioning
Services can be found in ISP.SISPSAMP members FLMSACCT (ACCTINFO),
FLMSVERI (VERINFO), FLMSVERR (VERRECOV) and FLMSVERD (VERDEL).

The source code for the Pascal sample programs is found in ISP.SISPSAMP
members FLMSRV1, FLMSRV1D, and FLMSRV1S. The source code for the PL/I
sample program is found in ISP.SISPSAMP member FLMPLSM.

Pascal Example
You can use the following sample Pascal programs to migrate and build a
component registered with SCLM. SCLM prompts you for responses as it processes
the component. The program prolog contains a description of the required
ddnames to be allocated before you start the program.

Note: All requested input parameters must be entered in upper case characters.

© Copyright IBM Corp. 1990, 2001 105

Main Program FLMSRV1

PROGRAM FLMSRV1 ;

(***)
(* *)
(* This program allows you to call SCLM services from a *)
(* Pascal program. *)
(* *)
(***)
(***)
(******** ALL REQUESTED INPUT PARAMETERS MUST BE ENTERED **********)
(******** IN UPPER CASE. **********)
(***)
(***)
(* *)
(* The function of this program is to register a software component *)
(* with SCLM and then build it. *)
(* The member in the SCLM controlled library (PDS) to be processed *)
(* is referenced by the variables project.group.type(member). *)
(* You must allocate the following ddnames as specified below: *)
(* *)
(* PRSLIST - for parser listings (RECFM=VBA,LRECL=137,BLKSIZE=3120) *)
(* BLDMSGS - for build messages (RECFM=F, LRECL=80, BLKSIZE=80) *)
(* BLDREPT - for build report (RECFM=FBA,LRECL=80, BLKSIZE=3120) *)
(* BLDLIST - for build listings (RECFM=VBA,LRECL=137,BLKSIZE=3120) *)
(* BLDEXIT - for build user exit (RECFM=FB, LRECL=160,BLKSIZE=3200) *)
(***)
(***)
(* Declare program and interface constants *)
(***)
CONST

(* Declare the maximum number of records the accounting record *)
(* list information array can hold. *)
max_list_info_entries = 200 ;

(* Declare the required ddnames as constants. *)
bldmsgs = 'BLDMSGS' ;
bldrept = 'BLDREPT' ;
bldlist = 'BLDLIST' ;
bldexit = 'BLDEXIT' ;

(* Include SCLM Interface common type declarations. *)
%INCLUDE FLMSRV1D ;

(* Include SCLM Interface procedure definitions. *)
%INCLUDE FLMSRV1S ;

(**)
(* Declare program local variables *)
(**)
VAR

$acct_info : $acct_info_type ;
$list_info : $list_info_type ;
$list_info_copy : $list_info_type ;
$stats_info : $stats_info_type ;
$stats_info_copy : $stats_info_type ;
$msg_array : $msg_array_type ;

106 z/OS V1R2.0 ISPF SCLM Reference

breport_check : char24 ;
build_scope : char24 ;
build_mode : char24 ;
access_key : char16 ;
appl_id : char8 ;
authcode : char8 ;
ddname : char8 ;
error_listings_only : char24 ;
found_group : char8 ;
language : char8 ;
group : char8 ;
listing_check : char24 ;
max_prom_group : char8 ;
msg_line : char80 ;
prefix_userid : char17 ;
project : char8 ;
project_def : char8 ;
retncode : INTEGER ;
pds_type : char8 ;
member : char8 ;
SCLM_id : char8 ;
sub_drawdown_mode : char24 ;
userid : char8 ;
verify_cc : char24 ;

(**)
(* Define the main program *)
(**)

BEGIN

(* Initialize terminal I/O. *)
TERMIN (INPUT) ;
TERMOUT(OUTPUT) ;

(* Initialize some working variables. *)
$stats_info_copy := NIL ;
$list_info_copy := NIL ;

(* Get the PDS/member name of the component to process. *)
WRITELN ('Enter the name of the project to process.');
READLN (project);
WRITELN ('Enter the name of the project definition to process.');
READLN (project_def);
IF

(project_def = ' ')
THEN

project_def := project;
WRITELN ('Enter the name of the development group to process.');
READLN (group);
WRITELN ('Enter the name of the type to process.');
READLN (pds_type);
WRITELN ('Enter the name of the member to process.');
READLN (member);
WRITELN ('Enter the language of the source member to register.');
READLN (language);

Chapter 3. Sample Programs Using SCLM Services 107

(* Issue a request to begin an SCLM service session. *)
SRVSTART (appl_id,

retncode);

(* Continue processing only if the request succeeded. *)
IF

retncode <> 0
THEN

WRITELN ('SCLM service START failed, error code = ', retncode:-3)
ELSE BEGIN

(* Issue a request to initialize an SCLM ID. *)
msg_line := ' ' ;
SRVINIT (appl_id,

project,
project_def,
SCLM_id,
msg_line,
retncode);

(* Continue processing only if the request succeeded. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service INIT failed, error code = ', retncode:-3);
WRITELN (msg_line);

END

ELSE BEGIN

(* Issue a request to lock the component. *)
authcode := ' ' ;
$acct_info := NIL ;
$list_info := NIL ;
$msg_array := NIL ;
SRVLOCK (SCLM_id,

group,
pds_type,
member,
authcode,
' ', (* access_key *)
userid,
found_group,
max_prom_group,
$acct_info,
$list_info,
$msg_array,
retncode);

(* If the lock failed, print associated error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service LOCK failed, error code = ', ;
retncode:-3); ;

PUTMSGS ($msg_array);
END

108 z/OS V1R2.0 ISPF SCLM Reference

ELSE BEGIN

(* Display some of the accounting record fields *)
WRITELN ('The component has been locked.');
WRITELN ('The component last changed date is: ',

$acct_info@.change_date);
WRITELN ('The component last changed time is: ',

$acct_info@.change_time);
WRITELN ('The component change-userid is: ',

$acct_info@.change_userid);
WRITELN ('The component version number is: ',

$acct_info@.member_version:-3);
END;

(* Continue processing only if the member has been locked. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to parse the component to obtain *)
(* the statistical information SCLM requires. *)
$stats_info := NIL ;

SRVPARSE (SCLM_id,
group,
pds_type,
member,
language,
'Y', (* error_listings_only = yes *)
'PRSLIST', (* ddname *)
$stats_info,
$list_info,
$msg_array,
retncode);

(* If the parse failed, print associated error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service PARSE failed, ',
'error code = ',retncode:-3);

PUTMSGS ($msg_array);
END
ELSE BEGIN

(* Copy all buffered service output into new buffers so *)
(* subsequent service calls do not delete the information. *)
WRITELN ('The component has been parsed.');
NEW ($stats_info_copy);
$stats_info_copy@ := $stats_info@ ;

NEW ($list_info_copy);
COPYLIST ($list_info, $list_info_copy);

END;
END;

Chapter 3. Sample Programs Using SCLM Services 109

(* Continue processing only if the member has been parsed. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to register the component with SCLM *)
$stats_info := $stats_info_copy ;
$list_info := $list_info_copy ;

SRVSTORE (SCLM_id,
group,
pds_type,
member,
' ', (* access_key *)
language,
userid,
'C', (* sub_drawdown_mode = cond. *)
'N', (* verify_cc = no *)
$stats_info,
$list_info,
$msg_array,
retncode);

(* If the store failed, print associated error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service STORE failed, ',
'error code = ',retncode:-3);

PUTMSGS ($msg_array);
END;

END;

(* Continue processing only if the member has been stored. *)
IF

retncode = 0
THEN BEGIN

(* Issue a request to build the component *))
(* registered with SCLM. *))
WRITELN ('The component has been stored.');
prefix_userid := STR(userid) ;

SRVBUILD (SCLM_id,
group,
pds_type,
member,
userid,
'N', (* build_scope = normal *)
'C', (* build_mode = conditional *)
'N', (* listing_check = no *)
'Y', (* breport_check = yes *)
prefix_userid,
bldmsgs, (* dd_bldmsgs *)
bldrept, (* dd_bldrept *)
bldlist, (* dd_bldlist *)
bldexit, (* dd_bldexit *)
retncode);

110 z/OS V1R2.0 ISPF SCLM Reference

(* If the build failed, print error messages. *)
IF

retncode <> 0
THEN BEGIN

WRITELN ('SCLM service BUILD failed, ',
'error code = ',retncode:-3);

WRITELN ('See the data set allocated to ddname=BLDMSGS ',
'for associated error messages.');

END
ELSE

WRITELN ('The component has been built.');
END;

(* Issue a request to free the SCLM ID. *)
SRVFREE (SCLM_id,

msg_line,
retncode);

END; (* INIT succeeded *)

(* Issue a request to end this SCLM service session. *)
SRVEND (appl_id,

msg_line,
retncode);

END; (* START succeeded *)

(* Free buffer memory if it is still allocated. *)
IF

$stats_info_copy <> NIL
THEN

DISPOSE ($stats_info_copy);

IF
$list_info_copy <> NIL

THEN
DISPOSE ($list_info_copy);

END. (* Main Program *)

Chapter 3. Sample Programs Using SCLM Services 111

Included Member FLMSRV1D

(***)
(* FLMSRV1D *)
(* *)
(* This member is included by program FLMSRV1 *)
(* *)
(***)
(***)
(* Declare Common SCLM Interface Types *)
(***)
TYPE

(* Declare arrays of various sizes. *)
char2 = PACKED ARRAY (. 1.. 2 .) OF CHAR ;
char4 = PACKED ARRAY (. 1.. 4 .) OF CHAR ;
char6 = PACKED ARRAY (. 1.. 6 .) OF CHAR ;
char8 = PACKED ARRAY (. 1.. 8 .) OF CHAR ;
char12 = PACKED ARRAY (. 1.. 12 .) OF CHAR ;
char16 = PACKED ARRAY (. 1.. 16 .) OF CHAR ; (* type = ALPHA *)
char17 = PACKED ARRAY (. 1.. 17 .) OF CHAR ;
char24 = PACKED ARRAY (. 1.. 24 .) OF CHAR ;

char43 = PACKED ARRAY (. 1.. 43 .) OF CHAR ;
char80 = PACKED ARRAY (. 1.. 80 .) OF CHAR ;
char110 = PACKED ARRAY (. 1..110 .) OF CHAR ;
char128 = PACKED ARRAY (. 1..128 .) OF CHAR ;

(* Declare a pointer to an SCLM message array. *)
$msg_array_type = @ msg_array_type ;
msg_array_type = PACKED ARRAY (. 1 .. 9999 .) OF char80 ;

(* Declare a pointer to the static portion *)
(* of an SCLM accounting record. *)
$acct_info_type = @ acct_info_type ;
acct_info_type =

RECORD
acct_group : char8 ;
acct_type : char8 ;
acct_member : char8 ;
SCLM_version : char2 ;
accounting_status : CHAR ;
change_date : char8 ;

112 z/OS V1R2.0 ISPF SCLM Reference

change_time : char6 ;
change_group : char8 ;
change_userid : char8 ;
member_version : INTEGER ;
language : char8 ;
authorization_code : char8 ;
authorization_code_change : char8 ;
access_key : char16 ;
creation_date : char8 ;
creation_time : char6 ;
map_date : char8 ;
map_time : char6 ;
predecessor_date : char8 ;
predecessor_time : char6 ;
promote_date : char8 ;
promote_time : char6 ;
promote_userid : char8 ;
db_qual : char8 ;
translator_version : char8 ;

Chapter 3. Sample Programs Using SCLM Services 113

map_name : char8 ;
map_type : char8 ;
language_version : char8 ;
total_lines : INTEGER ;
comment_lines : INTEGER ;
non_comment_lines : INTEGER ;
blank_lines : INTEGER ;
prolog_lines : INTEGER ;
total_stmts : INTEGER ;
comment_stmts : INTEGER ;
control_stmts : INTEGER ;
assignment_stmts : INTEGER ;
non_comment_stmts : INTEGER ;
number_of_user_entries : INTEGER ;
number_of_includes : INTEGER ;
number_of_changecodes : INTEGER ;
number_of_cus : INTEGER ;

END;

(* Declare a pointer to the statistical portion *)
(* of an SCLM accounting record. *)
$stats_info_type = @ stats_info_type ;
stats_info_type =
RECORD

total_lines : INTEGER ;
comment_lines : INTEGER ;
non_comment_lines : INTEGER ;
blank_lines : INTEGER ;
prolog_lines : INTEGER ;
total_stmts : INTEGER ;
comment_stmts : INTEGER ;
control_stmts : INTEGER ;
assignment_stmts : INTEGER ;
non_comment_stmts : INTEGER ;

END;

(* Declare an SCLM list-info change code entry. *)
change_code_record_type =

RECORD
change_code : char8 ;
date : char8 ;
time : char6 ;

END;

(* Declare an SCLM list-info EXTD entry. *)
extd_record_type =

RECORD
extd_group : char8 ;
extd_type : char8 ;
extd_name : char43 ;
date : char8 ;
time : char6 ;

END;

(* Declare an SCLM list-info compilation unit entry. *)
cu_record_type =

RECORD
cu_name : char110 ;
cu_type : CHAR ;
generic_flag : CHAR ;

114 z/OS V1R2.0 ISPF SCLM Reference

Included Member FLMSRV1S

depend_cu_name : char110 ;
depend_cu_type : CHAR ;
depend_cu_depend_type : CHAR ;

END;

(* Declare an SCLM accounting record list-info entry. *)
include_record_type =

RECORD
member : char8 ;
include_set : char8 ;

END;

(* Declare an SCLM accounting record list-info entry overlay. *)
list_info_record_type =

RECORD
record_kind : char4 ;
CASE INTEGER OF

1: (member : char8);
2: (compool : char8);
3: (change_code_record : change_code_record_type);
4: (user_entry : char128);
5: (cu_record : cu_record_type);
6: (extd_record : extd_record_type);
7: (include_record : include_record_type);

END;

(* Declare a pointer to an SCLM accounting record list-info array. *)
$list_info_type = @ list_info_type ;
list_info_type = PACKED ARRAY (.1..max_list_info_entries.)

OF list_info_record_type ;

(**)
(* FLMSRV1S SCLM SERVICE INTERFACE PROCEDURE DEFINITIONS *)
(* *)
(* This member is included by program FLMSRV1 *)
(* *)
(**)

(**)
(* SCLM START Service Interface *)
(**)
PROCEDURE SRVSTART (VAR appl_id : char8 ;

VAR rc : INTEGER);

FUNCTION FLMLNK (CONST service : char8 ;
VAR appl_id : char8): INTEGER ;

FORTRAN ;

BEGIN
rc := FLMLNK ('START ', appl_id);

END;

Chapter 3. Sample Programs Using SCLM Services 115

(**)
(* SCLM INIT Service Interface *)
(**)
PROCEDURE SRVINIT (CONST appl_id : char8 ;

CONST project : char8 ;
CONST project_def : char8 ;
VAR SCLM_id : char8 ;
VAR msg_line : char80 ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST appl_id : char8 ;
CONST project : char8 ;
CONST project_def : char8 ;
VAR SCLM_id : char8 ;
VAR msg_line : char80) : INTEGER ;
FORTRAN ;

BEGIN

rc := FLMLNK ('INIT ', appl_id, project, project_def, SCLM_id,
msg_line);

END;

(**)
(* SCLM FREE Service Interface *)
(**)
PROCEDURE SRVFREE (CONST SCLM_id : char8 ;

VAR msg_line : char80 ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST SCLM_id : char8 ;
VAR msg_line : char80) : INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('FREE ', SCLM_id, msg_line);

END;

116 z/OS V1R2.0 ISPF SCLM Reference

(**)
(* SCLM END Service Interface *)
(**)
PROCEDURE SRVEND (CONST appl_id : char8 ;

VAR msg_line : char80 ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST appl_id : char8 ;
VAR msg_line : char80) : INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('END ', appl_id, msg_line);

END;

(**)
(* SCLM BUILD Service Interface *)
(**)
PROCEDURE SRVBUILD (CONST SCLM_id : char8 ;

CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST userid : char8 ;
CONST build_scope : char24 ;
CONST build_mode : char24 ;
CONST listing_check : char24 ;
CONST breport_check : char24 ;
CONST prefix_userid : char17 ;
CONST dd_bldmsgs : char8 ;
CONST dd_bldrept : char8 ;
CONST dd_bldlist : char8 ;
CONST dd_bldexit : char8 ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST SCLM_id : char8 ;
CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST userid : char8 ;
CONST build_scope : char24 ;
CONST build_mode : char24 ;
CONST listing_check : char24 ;
CONST breport_check : char24 ;
CONST prefix_userid : char17 ;
CONST dd_bldmsgs : char8 ;
CONST dd_bldrept : char8 ;
CONST dd_bldlist : char8 ;
CONST dd_bldexit : char8) : INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('BUILD ', SCLM_id, group, pds_type, member, userid,

build_scope, build_mode, listing_check, breport_check,
prefix_userid,
dd_bldmsgs, dd_bldrept, dd_bldlist, dd_bldexit);

END;

Chapter 3. Sample Programs Using SCLM Services 117

(***)
(* SCLM LOCK Service Interface *)
(***)
PROCEDURE SRVLOCK (CONST SCLM_id : char8 ;

CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST authcode : char8 ;
CONST access_key : char16 ;
CONST userid : char8 ;
VAR found_group : char8 ;
VAR max_prom_group : char8 ;
VAR $acct_info : $acct_info_type ;
VAR $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST SCLM_id : char8 ;
CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST authcode : char8 ;
CONST access_key : char16 ;
CONST userid : char8 ;
VAR found_group : char8 ;
VAR max_prom_group : char8 ;
VAR $acct_info : $acct_info_type ;
VAR $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type):

INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('LOCK ', SCLM_id, group, pds_type, member, authcode,

access_key, userid,
found_group, max_prom_group,
$acct_info, $list_info, $msg_array);

END;

(***)
(* SCLM PARSE Service Interface *)
(***)
PROCEDURE SRVPARSE (CONST SCLM_id : char8 ;

CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST language : char8 ;
CONST error_listings_only : char24 ;
CONST ddname : char8 ;
VAR $stats_info : $stats_info_type ;
VAR $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST SCLM_id : char8 ;
CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;

118 z/OS V1R2.0 ISPF SCLM Reference

CONST language : char8 ;
CONST error_listings_only : char24 ;
CONST ddname : char8 ;
VAR $stats_info : $stats_info_type ;
VAR $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type):

INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('PARSE ', SCLM_id, group, pds_type, member, language,

error_listings_only, ddname,
$stats_info, $list_info, $msg_array);

END;

(***)
(* SCLM STORE Service Interface *)
(***)
PROCEDURE SRVSTORE (CONST SCLM_id : char8 ;

CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST access_key : char16 ;
CONST language : char8 ;
CONST userid : char8 ;
CONST sub_drawdown_mode : char24 ;
CONST verify_cc : char24 ;
CONST $stats_info : $stats_info_type ;
CONST $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type ;
VAR rc : INTEGER) ;

FUNCTION FLMLNK (CONST service : char8 ;
CONST SCLM_id : char8 ;
CONST group : char8 ;
CONST pds_type : char8 ;
CONST member : char8 ;
CONST access_key : char16 ;
CONST language : char8 ;
CONST userid : char8 ;
CONST sub_drawdown_mode : char24 ;
CONST verify_cc : char24 ;
CONST $stats_info : $stats_info_type ;
CONST $list_info : $list_info_type ;
VAR $msg_array : $msg_array_type) :

INTEGER ;
FORTRAN ;

BEGIN
rc := FLMLNK ('STORE ', SCLM_id, group, pds_type, member,

access_key, language, userid, sub_drawdown_mode,
verify_cc, $stats_info, $list_info, $msg_array);

END;

Chapter 3. Sample Programs Using SCLM Services 119

(**)
(* Procedure to print the contents of an SCLM $msg_array. *)
(**)
PROCEDURE PUTMSGS (VAR $msg_array : $msg_array_type);

VAR
indx : INTEGER ;

BEGIN (* Procedure PUTMSGS *)

(* Print message header information. *)
WRITELN ('Message array information...');

(* If the pointer is valid, print the information. *)
IF

$msg_array <> NIL
THEN BEGIN

(* Loop through the list information. *)
indx := 1 ;
WHILE

$msg_array@(.indx.) <> 'END'
DO BEGIN

WRITELN ($msg_array@(.indx.)) ;
indx := indx + 1 ;

END;
END; (* if $msg_array <> nil *)

(* Reset :q.$msg_array:eq. to NIL. *)
$msg_array := NIL;

END; (* Procedure PUTMSGS *)

(***)
(* Procedure to copy an accounting record list information array. *)
(***)
PROCEDURE COPYLIST (CONST $list_info : $list_info_type ;

VAR $list_info_copy : $list_info_type) ;

VAR
indx : INTEGER ;

BEGIN (* Procedure COPYLIST *)

(* Only perform the copy if the input list is not nil. *)
IF

$list_info <> NIL
THEN BEGIN

(* Allocate storage for the copy list if the caller *)
(* has not yet done this. *)
IF

$list_info_copy = NIL
THEN

NEW ($list_info_copy);

(* Loop through the list information, copying entry-by-entry. *)
indx := 1 ;
REPEAT

$list_info_copy@(.indx.) := $list_info@(.indx.) ;

120 z/OS V1R2.0 ISPF SCLM Reference

PL/I Example
The following is a sample PL/I program for SCLM service procedures.

indx := indx + 1 ;
UNTIL

($list_info@(.indx-1.).record_kind = 'END ')
OR

(indx > max_list_info_entries) ;

(* Check for overflow condition. *)
IF

indx > max_list_info_entries
THEN BEGIN

WRITELN ('*** ERROR *** List information array overflowed!');
WRITELN ('*** ERROR *** Increase size of program constant.');

END;
END; (* if $list_info <> nil *)

END; (* Procedure COPYLIST *)

Chapter 3. Sample Programs Using SCLM Services 121

FLMPLSM: PROC (PARMS) OPTIONS(MAIN NOEXECOPS);
/**/
/* */
/* PL/I PROGRAM WHICH CALLS SCLM SERVICES */
/* */
/* PROCEDURES IN THIS PROGRAM: */
/* */
/* -SCLSTRT START SCLM SESSION */
/* -SCLINIT INIT SCLM_ID */
/* -SCLEDIT EDIT SCLM SOURCE MEMBER */
/* -SCLFREE FREE SCLM_ID */
/* -SCLEND END SCLM SESSION */
/* */
/**/
/* */
/* DECLARATIONS */
/* */
/**/
DCL PLIRETV BUILTIN ;
DCL FLMLNK ENTRY EXTERNAL OPTIONS(ASM,INTER,RETCODE) ;
DCL ISPLINK ENTRY EXTERNAL OPTIONS(ASM,INTER,RETCODE) ;

/**/
/* PARAMETERS USED IN THIS PROGRAM */
/**/
DCL PARMS CHAR(80) VARYING;

DCL 1 PARM,
2 PARM1 CHAR(8) INIT('') ,
2 DELM1 CHAR(1) INIT('') ,
2 PARM2 CHAR(8) INIT('') ,
2 DELM2 CHAR(1) INIT('') ,
2 PARMX CHAR(62) INIT('') ;

/**/
/* VARIABLES USED BY SCLM SERVICES */
/**/
DCL SERVICE CHAR(8) INIT(' ') ;
DCL APPL_ID CHAR(8) INIT(' ') ;
DCL SCLM_ID CHAR(8) INIT(' ') ;
DCL PRJ_DEF CHAR(8) INIT(' ') ;
DCL PROJECT CHAR(8) INIT(' ') ;
DCL MSG_LINE CHAR(80) INIT(' ') ;

DCL Y CHAR(24) INIT('Y '),
C CHAR(24) INIT('C '),
N CHAR(24) INIT('N ');

DCL SLMLIB CHAR(8),
SLMLIB2 CHAR(8),

122 z/OS V1R2.0 ISPF SCLM Reference

SLMLIB3 CHAR(8),
SLMLIB4 CHAR(8),
ALL_HIER CHAR(24),
IMAC CHAR(8),
PROF CHAR(8),
CONFIRM CHAR(24),
MIX CHAR(24),
WS CHAR(24),
PRESERVE CHAR(24),
AUTHCODE CHAR(8),
CHGCODE CHAR(8),
VOLSER CHAR(8),
SLMPROJ CHAR(8),
SLMALTP CHAR(8),
SLMTYP CHAR(8),
SLMMEM CHAR(8),
MSGLIST CHAR(80);

DCL BLNK8 CHAR(8) INIT(' '),
DDNAME CHAR(8),
DONE BIT(1);

/**/
/* MAIN PROGRAM LOGIC */
/**/

PARM1 = 'PROJECT ';
PARM2 = 'ALT_PROJ';
PROJECT = PARM1;
PRJ_DEF = PARM2;
IF PRJ_DEF = ' ' THEN PRJ_DEF = PROJECT ;

CALL SCLSTRT ;
CALL SCLINIT ;
CALL SCLEDIT ;
CALL SCLFREE ;
CALL SCLEND ;

/**/
/* GENERATE AN APPLICATION ID FOR SCLM SESSION */
/**/
SCLSTRT: PROC ;
SERVICE = 'START';
APPL_ID = '';

CALL FLMLNK (SERVICE , APPL_ID) ;
RETCODE = PLIRETV() ;

END SCLSTRT ;

/**/
/* INITIALIZE SCLM ID FOR SERVICES */
/**/
SCLINIT: PROC ;
SERVICE = 'INIT' ;
SCLM_ID = '';

CALL FLMLNK (SERVICE , APPL_ID
, PROJECT

Chapter 3. Sample Programs Using SCLM Services 123

, PRJ_DEF
, SCLM_ID
, MSG_LINE) ;

RETCODE = PLIRETV() ;

END SCLINIT ;

/**/
/* EDIT A MEMBER IN THE PROJECT HIERARCHY */
/**/
SCLEDIT: PROC ;
SLMLIB = 'DEV1 ';
SLMLIB2 = ' ';
SLMLIB3 = ' ';
SLMLIB4 = ' ';
SLMTYP = 'SOURCE ';
SLMMEM = 'MEMBER1 ';
SERVICE = 'EDIT ';
DDNAME = 'EDIT ';
ALL_HIER = N;
IMAC = ' ';
PROF = ' ';
CONFIRM = N;
MIX = N;
WS = N;
PRESERVE = 'Y';
AUTHCODE = ' ';
CHGCODE = ' ';
VOLSER = BLNK8;

CALL FLMLNK(SERVICE,SCLM_ID,SLMLIB,
SLMLIB2,SLMLIB3,SLMLIB4,
SLMTYP,SLMMEM,ALL_HIER,
IMAC,PROF,CONFIRM,MIX,WS,
PRESERVE,AUTHCODE,CHGCODE,
VOLSER,DDNAME);

RETCODE = PLIRETV() ;
IF RETCODE > 0 THEN

CALL ISPLINK('BROWSE ','SCLM.MSGS ');

END SCLEDIT ;

/***/
/* FREE SCLM ID */
/***/
SCLFREE: PROC ;
SERVICE = 'FREE ' ;

CALL FLMLNK (SERVICE, SCLM_ID
, MSG_LINE) ;

RETCODE = PLIRETV() ;

END SCLFREE ;

/***/
/* END AN SCLM SERVICES SESSION */
/***/
SCLEND: PROC ;

124 z/OS V1R2.0 ISPF SCLM Reference

SERVICE = 'END ' ;

CALL FLMLNK (SERVICE, APPL_ID
, MSG_LINE) ;

RETCODE = PLIRETV() ;

END SCLEND ;

END;

Chapter 3. Sample Programs Using SCLM Services 125

126 z/OS V1R2.0 ISPF SCLM Reference

Chapter 4. SCLM Macros

SCLM supplies a set of macro instructions that you can use to define project
definitions. This chapter describes those macro instructions, explaining the format
of each. The macros described below are contained in ISP.SISPMACS, which is
delivered with the product.

The macros appear in alphabetical order. For each macro, the chapter provides the
command format, a description of the parameters you use, and an example. For
additional information, refer to ISPF Software Configuration and Library Manager
(SCLM) Project Manager’s and Developer’s Guide.

Table 3. Macros

Macro Description Page

FLMABEG Define project name of the project definition “FLMABEG Macro”
on page 129

FLMAEND Last macro in the project definition “FLMAEND Macro”
on page 130

FLMAGRP Define a set of authorization codes “FLMAGRP Macro”
on page 130

FLMALLOC Many uses “FLMALLOC Macro”
on page 130

FLMALTC Specify control information “FLMALTC Macro”
on page 148

FLMATVER Enable audit and version utility “FLMATVER Macro”
on page 152

FLMCNTRL Specify project specific control options “FLMCNTRL Macro”
on page 155

FLMCPYLB Identify data set name to be allocated “FLMCPYLB Macro”
on page 173

FLMGROUP Define groups in the project definition “FLMGROUP Macro”
on page 174

FLMINCLS Associate include sets with types in the
project hierarchy

“FLMINCLS Macro”
on page 176

FLMLANGL Define a language to SCLM “FLMLANGL Macro”
on page 180

FLMLRBLD Cause certain members to be rebuilt when
promoted into particular groups.

“FLMLRBLD Macro”
on page 182

FLMSYSLB Define system macro or include data sets “FLMSYSLB Macro”
on page 183

FLMTCOND Run or skip build translators “FLMTCOND Macro”
on page 185

FLMTOPTS Vary options passed to a build translator “FLMTOPTS Macro”
on page 189

FLMTRNSL Similar to JCL EXEC statements “FLMTRNSL Macro”
on page 190

FLMTYPE Define types in the project definition “FLMTYPE Macro” on
page 196

© Copyright IBM Corp. 1990, 2001 127

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

||
|
|
|

|||
|

||
|
|
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

This chapter uses the following notation conventions to describe the format of the
SCLM macros:

Uppercase Uppercase commands or parameters must be spelled out as shown.

Lowercase Lowercase parameters are variables; substitute your own values.

Underscore Underscored parameters are the system default.

Brackets ([]) Parameters in brackets are optional.

Braces ({ }) Braces show two or more parameters from which you must select
one.

OR (|) The OR (|) symbol separates two or more values (inside braces)
from which you must select one.

The example below shows the macro format for the SAMPLE macro:
SAMPLE PARM1=parm1_input

,PARM1A={XXX|YYY|ZZZ}
[,PARM2=parm2_input]
[,PARM2A=Y|N]

In the sample macro:
v PARM1 is a required parameter for which a user-specified value is substituted.

There is no default value.
v PARM1A is a required parameter that must have the value XXX, YYY, or ZZZ.

There is no default value.
v PARM2 is an optional parameter for which a user-specified value is substituted.

There is no default value.
v PARM2A is an optional parameter that must have the value Y or N. The default

is Y.

Notes on Using the SCLM Macros
Because these are S/370 Assembler macros, all rules pertaining to Assembler
macros apply. In addition, the following SCLM guidelines apply to the use of
SCLM macros:
v Assembler does not support blanks in macro parameters; if a blank is used in a

parameter that is delimited by parentheses, everything on the line after the
blank will be ignored. If you use single quotes to delimit parameters, be careful
when continuing to a new line. All blanks between the first single quote and the
continuation character are considered part of the parameter. This can result in
exceeding the maximum parameter length. If you need more than 71 characters
for a line of code, you must put a continuation character in column 72 and begin
the remaining lines in column 16.

v If any commas are omitted from the parameter list for any of the macros, the
project definition might assemble correctly, but SCLM might use different
defaults than expected, resulting in errors. All parameters except the last must
be followed by a comma.

v If an optional parameter is specified without a value or the parameter is not
specified, the default value is used; for example, PARM2A= or not specifying
PARM2A on the macro statement causes PARM2A to default to Y. If the
parameter does not have a default value then no value (null) is specified for the
parameter.

v SCLM handles invalid values for required and optional parameters differently. If
you specify an invalid value for a required parameter, SCLM might issue an

128 z/OS V1R2.0 ISPF SCLM Reference

error message and the project definition assembly ends with a return code of 8.
If you specify an invalid value for an optional parameter, SCLM issues a
warning message, uses the default value for the parameter, and returns a return
code of 4. Limited verification of the parameters is done during the assembly of
the project definition. In many cases, the error does not occur until run time. An
MNOTE is added to the assembly listing to indicate the invalid parameter
specifications.

v SCLM performs validation of data set names when the data sets are opened.
SCLM performs validation of VSAM versioning data set names when they are
required for use by SCLM.

v The messages you receive when the project definition is assembled are issued
from the SCLM macros and the assembler. SCLM messages are identified as
MNOTEs. For more information on MNOTES, refer to ISPF Messages and Codes.
For explanations of other messages, refer to the Assembler H V2 Programming
Guide.
The SCLM MNOTEs appear in one of two places within the listing:
– Directly after the SCLM macro statement that contains incorrect parameter

values
– Near the end of the listing where SCLM cross-checks the values of the

various SCLM macro statements. Assembler error messages usually occur
inline where the syntax error was made.

v Some SCLM macros accept SCLM variables as input parameters. Valid variables
are indicated in the parameter descriptions for the particular macros to which
they apply. If the description of a parameter does not list valid variables, no
variables can be used for that parameter. For more information on any variable
mentioned in the descriptions, see “Chapter 6. SCLM Variables and
Metavariables” on page 269.

You can find more information on the use of macros in the Assembler H V2
Application Programming Language Reference or OS/VS - DOS/VSE - VM/370
Assembler Language.

FLMABEG Macro
Use this macro to define the project name of the project definition. It is required
for the project definition and must appear before the other SCLM macros in the
project definition.

Macro Format
name FLMABEG

Parameters
name

An 8-character project name. For alternate project definitions, use the “main”
project definition name; this is the high-level qualifier of the project definition
LOAD data set.

Example
PROJ1 is the name of the project being specified by this project definition.
PROJ1 FLMABEG

Chapter 4. SCLM Macros 129

FLMAEND Macro
Use this macro as the last macro in the project definition. All SCLM macros you
use to define the project definition must appear between the FLMABEG and
FLMAEND macros. It is required and must be the last macro in the project
definition.

Macro Format
FLMAEND

Parameters
This macro has no parameters.

FLMAGRP Macro
Use this macro to define a set of authorization codes. You can then specify the
authorization group name in the AC field on the FLMGROUP macro to assign the
set of authorization codes to that group name.

Macro Format
name FLMAGRP AC=(code1,code2,...)

Parameters
name

An 8-character authorization group name containing no special characters or
imbedded blanks.

AC=(code1,code2,...)
A list of authorization codes and authorization groups you can assign to the
authorization group name. If code# is an authorization group, then you must
have previously defined it with the FLMAGRP macro. Each authorization code
or group can be up to 8 characters and cannot contain commas. The maximum
number of characters allowed is 255, including commas and the delimiting
parentheses.

Example
Authorization group SET1 contains the authorization codes R3M0, R3M1, and
R3M2. Authorization group SET2 contains two authorization codes, R1M0 and
R2M0, and one previously defined authorization group, SET1, for a total of five
authorization codes (R1M0, R2M0, R3M0, R3M1, and R3M2).

SET1 FLMAGRP AC=(R3M0,R3M1,R3M2)
SET2 FLMAGRP AC=(R1M0,R2M0,SET1)

FLMALLOC Macro
This macro provides the following capabilities to SCLM:
v Allocate temporary or permanent data sets that are used by translators

FLMALLOC provides a limited equivalency to JCL DD or TSO ALLOCATE
statements in your procedure libraries. The FLMALLOC parameters that provide
this capability are BLKSIZE, CATLG, DDNAME, DIRBLKS, DISP, DSNTYPE,
LRECL, RECFM, RECNUM, MEMBER, DINIT, MALLOC, and ALLCDEL.
DINIT, MALLOC, and ALLCDEL indicate how the data set is to be
dispositioned.

FLMAEND Macro

130 z/OS V1R2.0 ISPF SCLM Reference

When allocating permanent data sets, use IOTYPE=A or I. When allocating
temporary data sets, use IOTYPE=O, P, S, or W.
IOTYPEs A and I are used to associate a ddname with data sets that already
exist.
IOTYPE=S is used for input data from an SCLM-controlled library. The member
in this library is copied into a temporary data set for use by the translator.
IOTYPE=O is used for output data to be stored in an SCLM-controlled data set.
A temporary sequential data set is allocated for use by the translator and the
output produced by the translator is copied into the member in the
SCLM-controlled data set.
IOTYPE=P is used for output data to be stored in an SCLM-controlled library. A
temporary partitioned data set is allocated for use by the translator and
members produced by the translator are copied into an SCLM controlled data
set.
In general, if the translator writes to a sequential data set, use IOTYPE=O; if the
translator writes to a member of a partitioned data set, use IOTYPE=P.
IOTYPE=W is used to allocate temporary data sets for use by the translator.
These data sets are discarded at the completion of a BUILD or PROMOTE.
SCLM creates temporary data sets for the translators to use rather than
allocating directly to the hierarchy data sets. This protects the integrity of the
project hierarchy data when the translator is producing output that will be
stored in the hierarchy. The output is copied from the temporary datasets to the
project hierarchy after all the translators have been invoked. If multiple
translators are invoked, DDNAMEs for the temporary outputs must be unique
for each translator or only the outputs from the last translator will be copied.
All of the allocations for FLMALLOC macros that follow the FLMTRNSL macro
are performed just before the translator is invoked. The exception to this rule
applies when MALLOC=Y; see the description of MALLOC for details. The
ordering of FLMALLOC macros in relation to FLMTRNSL macros is similar to
the ordering of DD statements in relation to EXEC statements in JCL.
Temporary data sets that were created by SCLM are deleted when all of the
build translators have completed processing for the member being built.

v Control the contents of the ddname substitution list
The ddname substitution list is passed as a parameter to a translator that has
PORDER=2 or 3. If PORDER=0 or 1, SCLM does not generate a ddname
substitution list. Not all translators accept ddname substitution lists. If a
translator does accept a ddname substitution list, the ddnames in the list are
used to override the default ddnames used by the translator.
In addition to ddnames, sometimes the ddname substitution list specifies the
name of a member to be created. This is true for the linkage editor used by
SCLM. The linkage editor accepts the name of the member to be created as a
parameter in the ddname substitution list. Valid FLMALLOC parameters for this
capability are KEYREF and IOTYPE. Use IOTYPE=L to add a member name to
its ddname substitution list.
Ddname substitution lists are generated through the use of FLMALLOC
statements. Each FLMALLOC statement adds a ddname to the list. The order in
which the ddnames appear in the list is defined by the order of the FLMALLOC
statements.
For general information about ddname substitution lists, refer to “Invoking
Utility Programs from Application Programs” in the DFSMS Utilities manual .
Refer to the manuals for the specific translator being invoked for details on the
substitution list contents expected. For IBM supplied compilers, this information

FLMALLOC Macro

Chapter 4. SCLM Macros 131

|
|
|
|

is located in the compiler’s Programmers Guide manual under “Invoking
Compiler from Application Programs” or “Dynamic Invocation of Compiler”.

v Identify hierarchy data to be used or created by a translator
FLMALLOC can be used to identify information in the hierarchy that is either
the input to a translator or the destination of the output from a translator.
The FLMALLOC parameters that are valid for this purpose are MALLOC,
NOSAVRC, DFLTTYP, KEYREF, and LANG. The IOTYPE identifies whether the
allocation is for input to or output from a translator. To identify the members of
the hierarchy to use as input to a translator, use IOTYPE=S or A. To identify the
temporary output data sets that SCLM should store in the hierarchy, use
IOTYPE=O or P. If you want the information to be read from or saved in the
project hierarchy, you must specify the KEYREF parameter, except for
IOTYPE=S, which defaults to SINC.

v Identify the translator data sets to be copied to a listing data set
Use the PRINT parameter to copy the contents of a temporary data set to the
listing data set. A listing data set is a sequential data set that contains any list
information returned from a translator. Listings can be created by the SCLM
build, promote, parse, migrate, or save services and by SCLM Edit. See the
PRINT parameter description for more information.

v Use the output of one translator as input to another translator
This capability is used when one translator creates information that is required
by another translator. This is only possible when multiple translators are defined
for a language definition for the same function (FUNCTN=) value.
Use IOTYPE=U to indicate that the output from a previously called translator is
to be used. See “IOTYPE=U” on page 140 for more information.

Macro Format
FLMALLOC IOTYPE={A|I|L|N|O|P|S|U|W}

[,BLKSIZE=block_size]

[,CATLG=N|Y]

[,DDNAME=ddname]

[,DINIT=N|Y]

[,DIRBLKS=directory_blocks]

[,DISP=OLD|SHR|MOD|NEW]

[,DFLTMEM=default_member]

[,DFLTTYP=default_type]

[,DSNTYPE=PDS|Library]

[,KEYREF=keyword_reference]

[,LANG=language]

[,MALLOC=N|Y]

[,ALLCDEL=N|Y]

[,LRECL=record_length]

[,MEMBER=member_name]

FLMALLOC Macro

132 z/OS V1R2.0 ISPF SCLM Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[,NOSAVRC=no_save_rc]

[,PRINT=N|Y|I]

[,RECFM=record_format]

[,RECNUM=number_of_records]

[,VIO={Y|N}]

[,INCLS=include_set_name]

Parameters
IOTYPE={A|I|L|N|O|P|S|U|W}

Specifies the type of data sets to be allocated and how these data sets can be
used. FLMALLOC has different capabilities based on the IOTYPE assigned to
it. Therefore, through the use of IOTYPEs, FLMALLOC is like nine different
macros.

Figure 4 on page 134 shows the language definition, FLM01ASM, which is
delivered in the partitioned data set ISP.SISPSAMP. This sample is available as
part of the ISPF product. Refer to this sample as necessary to understand the
different IOTYPEs. Of course, not all IOTYPEs are used by any one language
definition, but this will provide some aid in understanding most IOTYPEs.

FLMALLOC Macro

Chapter 4. SCLM Macros 133

|
|
|
|
|
|
|
|
|
|
|

* OS/VS ASSEMBLER LANGUAGE DEFINITION FOR SCLM
*
* POINT THE FLMSYSLB MACRO(S) AT ALL 'STATIC' COPY DATA SETS
* ADD FLMCPYLB MACROS FOR EACH FLMSYSLB, TO THE 'SYSLIB' FLMALLOC MACRO
* CUSTOMIZE THE 'OPTIONS' AND 'GOODRC' FIELDS TO YOUR STANDARDS.
* ADD THE 'DSNAME' FIELD IF THE TRANSLATOR IS IN A PRIVATE LIBRARY.
* WHEN A NEW TRANSLATOR VERSION REQUIRES TOTAL RECOMPILATION FOR THIS
* LANGUAGE, THE 'VERSION' FIELD ON FLMLANGL SHOULD BE CHANGED.

ASM FLMSYSLB SYS1.MACLIB
*

FLMLANGL LANG=ASM,VERSION=ASMV1.0
*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='SCLM ASM PARSE', C
FUNCTN=PARSE, C
COMPILE=FLMLPGEN, C
PORDER=1, C
OPTIONS=(SOURCEDD=SOURCE, C
PARSEMEM=@@FLMMBR, C
STATINFO=@@FLMSTP, C
LISTINFO=@@FLMLIS, C
LISTSIZE=@@FLMSIZ, C
LANG=A) *** THIS IS ASSEMBLER ONLY ***

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD TRANSLATOR(S)
*
*
* --ASSEMBLER INTERFACE--

FLMTRNSL CALLNAM='ASSEMBLER', C
FUNCTN=BUILD, C
COMPILE=IFOX00, C
VERSION=1.0, C
GOODRC=0, C
PORDER=1, C
OPTIONS=(XREF(SHORT),LINECOUNT(75),OBJECT,RENT)

*
* DDNAME ALLOCATIONS
*
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=5000
FLMALLOC IOTYPE=W,DDNAME=SYSUT1,RECNUM=17500
FLMALLOC IOTYPE=W,DDNAME=SYSUT2,RECNUM=15000
FLMALLOC IOTYPE=W,DDNAME=SYSUT3,RECNUM=15000
FLMALLOC IOTYPE=O,DDNAME=SYSGO,KEYREF=OBJ,RECNUM=7500,DFLTTYP=OBJ
FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
* ADD ONE FLMCPYLB FOR EACH FLMSYSLB

FLMCPYLB SYS1.MACLIB
FLMALLOC IOTYPE=O,DDNAME=SYSPRINT,KEYREF=LIST,PRINT=Y, C

DFLTTYP=SOURCLST,RECNUM=20000
*
* 5665-402 (C) COPYRIGHT IBM CORP 1980, 1989

Figure 4. Sample language definition for Assembler

FLMALLOC Macro

134 z/OS V1R2.0 ISPF SCLM Reference

For the purpose of explanation, assume that any source modules built by sample
architecture definitions given in the following descriptions have been saved with
the preceding language definition.

IOTYPE=A Allocate a permanent data set or set of permanent data sets for
either input or output. You need the FLMCPYLB macro to identify
the data sets. There is an MVS limitation to the number of data
sets that can be allocated to the ddname; the maximum is 123 data
sets. The data sets allocated using this IOTYPE can be either
partitioned or sequential. The default disposition is SHR. The DISP
parameter can be used to override the default when a single data
set is to be allocated. For example, you might use the override
when you want to allocate a data set to be used for output with a
dispostion of OLD. If more than one data set is allocated, the DISP
parameter must be SHR.

Example:

In Figure 4 on page 134, IOTYPE=A is used to allocate the SOURCE
DDNAME. This identifies the source data set that will be used by
the ’SCLM ASM PARSE’ translator. If you use SCLM Edit to save
member FLM01MD1 in type SOURCE and group DEV1 of project
PROJ1, the FLMCPYLB statement identifies
’PROJ1.DEV1.SOURCE(FLM01MD1)’ as the member to allocate as
input to the parser.

IOTYPE=I Allocate libraries in the hierarchy for an include set. The INCLS
parameter indicates the name of an include set as specified on an
FLMINCLS macro. If no INCLS parameter is specified, the default
include set is used.

A value should be specified for the KEYREF parameter or it will
default to SINC and a warning message will be issued. The data
sets allocated depend on the value of the KEYREF parameters:
v For KEYREF=SREF, the hierarchy for the SREF type is allocated.
v For KEYREF=CREF, the hierarchy for the CREC type is allocated.
v For KEYREF=SINC, the INCLS parameter indicates that the

types allocated are listed in the FLMINCLS macro for the
include set. The FLMSYSLB data sets are allocated if
ALCSYSLB=Y is specified on the FLMLANGL macro for the
language, followed by any data sets specified on FLMCPYLB
macros.
SCLM allocates all of the data sets for the types associated with
the include set within the current view of the hierarchy. The
starting group for the hierarchial view is defined by the group
used as input to the function, rather than the group where the
referenced member was found. The hierarchies for each type are
allocated in the order specified on the FLMINCLS macro.

This allocation is typically used to resolve include dependencies
when performing a compilation. FLMCPYLBs that follow this
allocation should not reference SCLM-controlled data sets.

At least one data set must exist in the hierarchy for the types
referenced.

Example:

FLMALLOC Macro

Chapter 4. SCLM Macros 135

In Figure 4 on page 134, IOTYPE=I with KEYREF=SINC is used to
allocate the SYSLIB DDNAME. Because no INCLS parameter is
specified for the IOTYPE=I, the default include set is used. In
addition, because no FLMINCLS macro is specified for the default
include set in this language definition, an FLMINCLS macro is
generated with TYPES=(@@FLMTYP,@@FLMETP). If the example project
hierarchy has been set up according to the steps identified in ISPF
Software Configuration and Library Manager (SCLM) Project Manager’s
and Developer’s Guide member FLM01CMD for
’PROJ1.RELEASE.ARCHDEF’ contains the following statements:

*
* Object Module 1
*
OBJ FLM01MD1 OBJ
LIST FLM01MD1 SOURCLST
SINC FLM01MD1 SOURCE
PARM NOXREF,LC(75)

If a build was performed on this member at the DEV1 group, the
FLMALLOC macro would indicate that a hierarchy should be
allocated starting at the DEV1 group for the type indicated by the
SINC card. In this case, ’PROJ1.DEV1.SOURCE’,
’PROJ1.TEST.SOURCE’, ’PROJ1.RELEASE.SOURCE’, and
’SYS1.MACLIB’ would be allocated.

If you were to look at the project definition for PROJ1, you would
see the following macro that defines the SOURCE type:

SOURCE FLMTYPE

Notice that there is no extend type defined. If, however, this type
had been defined as follows:

SOURCE FLMTYPE EXTEND=SOURCE2

then building this member at the DEV1 group would have resulted
in an allocation of the following: ’PROJ1.DEV1.SOURCE’,
’PROJ1.TEST.SOURCE’, ’PROJ1.RELEASE.SOURCE’,
’PROJ1.DEV1.SOURCE2’, ’PROJ1.TEST.SOURCE2’,
’PROJ1.RELEASE.SOURCE2’, and ’SYS1.MACLIB’, in that order.

If the extended type SOURCE2 was defined as shown in the
preceding macro, and a build was performed at the TEST group,
the following would be allocated: ’PROJ1.TEST.SOURCE’,
’PROJ1.RELEASE.SOURCE’, ’PROJ1.TEST.SOURCE2’,
’PROJ1.RELEASE.SOURCE2’, and ’SYS1.MACLIB’, in that order.

In this example, the default values have been used for the include
set. If the FLMALLOC macro for IOTYPE=I had been written as
follows, the include set of SYSLIB would have been used:
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC,INCLS=SYSLIB
* ADD ONE FLMCPYLB FOR EACH FLMSYSLB

FLMCPYLB SYS1.MACLIB

In the previous example, the default values have been used for the
include set and the FLMSYSLB data sets were not allocated. If the
FLMLANGL macro had ALCSYSLB=Y and the FLMALLOC macro
for IOTYPE=I had been written as follows, the include set of
SYSLIB would have been used:

FLMALLOC Macro

136 z/OS V1R2.0 ISPF SCLM Reference

FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC,INCLS=SYSLIB
* COPYLIB ALLOCATION OF FLMSYSLB DATA SETS IS DONE AUTOMATICALLY

The FLMSYSLB macro would need to specify the include set using
the INCLS parameter.
ASM FLMSYSLB SYS1.MACLIB,INCLS=SYSLIB

An FLMINCLS macro is required in the language definition to
indicate the types to be included in the allocation. The following
FLMINCLS macro first searches the MACROS type followed by the
type and extended type.
* INDICATE THE TYPES TO SEARCH FOR THE SYSLIB INCLUDE-SET
SYSLIB FLMINCLS TYPES=(MACROS,@@FLMTYP,@@FLMETP)

Using the preceding FLMINCLS macro, SCLM allocates data sets
in the following order for the SYSLIB ddname when building at
group DEV1:
1. ’PROJ1.DEV1.MACROS’
2. ’PROJ1.TEST.MACROS’
3. ’PROJ1.RELEASE.MACROS’
4. ’PROJ1.DEV1.SOURCE’
5. ’PROJ1.TEST.SOURCE’
6. ’PROJ1.RELEASE.SOURCE’
7. ’PROJ1.DEV1.SOURCE2’
8. ’PROJ1.TEST.SOURCE2’
9. ’PROJ1.RELEASE.SOURCE2’

10. ’SYS1.MACLIB’

IOTYPE=L Pass a member name in the ddname substitution list. See the
PORDER parameter in “FLMTRNSL Macro” on page 190 for more
information. The KEYREF parameter identifies the member name
and type. This IOTYPE is commonly used to identify the load
module name for the S/370 linkage editor.

Note: IOTYPE=L is only valid when the PORDER parameter in the
FLMTRNSL macro is set to 2 or 3.

Example:

Figure 4 on page 134 is not a linkage editor language definition;
therefore, it does not contain an example of IOTYPE=L. However,
FLM01370 in ISP.SISPSAMP, part of the sample project definition,
contains an example of IOTYPE=L. If the example project hierarchy
has been set up according to the steps identified in ISPF Software
Configuration and Library Manager (SCLM) Project Manager’s and
Developer’s Guide member FLM01LD1 for
’PROJ1.RELEASE.ARCHDEF’ contains the following statements:

*
* Load Module LMOD1
*
LOAD FLM01LD1 LOAD
LMAP FLM01LD1 LMAP
INCL FLM01CMD ARCHDEF
PARM MAP,NCAL,
PARM LET

FLMALLOC Macro

Chapter 4. SCLM Macros 137

If a build was performed for this architecture definition, the
FLMALLOC macro with IOTYPE=L and KEYREF=LOAD would
pass ″FLM01LD1″ to the Linkage Editor.

IOTYPE=N Skip over a field during ddname substitution. This IOTYPE is valid
only for PORDER=2 or 3. SCLM adds 8 bytes of hexadecimal zeros
to the ddname substitution list.

Example:

This IOTYPE is not used by Figure 4 on page 134, but if a translator
accepted a ddname substitution list, using this IOTYPE on the
FLMALLOC macro would result in 8 hexadecimal zeros being
placed in the ddname substitution list.

IOTYPE=O Allocate a sequential temporary data set that will contain output
from a translator that is to be saved in the project hierarchy. A
KEYREF parameter must be used to identify the output member
name and type. Valid KEYREF values are OBJ, COMP, LIST,
LOAD, LMAP, and OUTx.

Note: If the outputs of a translator are empty files then SCLM will
copy the translator outputs into the hierarchy as empty
members and create accounting records for these members.

Example:

In Figure 4 on page 134, IOTYPE=O is used to allocate the
SYSPRINT DDNAME. This is a temporary data set into which the
translator will write the Assembler listing. Refer to the example for
IOTYPE=I for an illustration of what is contained in architecture
definition member FLM01CMD. If this member were built at
DEV1, the build listing would be copied into the hierarchy into the
member and type specified by the LIST card, FLM01MD1
SOURCLST.

This example is building an architecture definition, so DFLTTYP
will be ignored or overridden by the LIST card. If only the source
were being built, the listing would go into the type specified by
DFLTTYP.

IOTYPE=P Allocate a temporary partitioned data set that will contain output
from a translator that is to be saved in the project hierarchy. The
dsntype parameter is used to indicate whether the temporary data
set should be allocated as PDS or PDSE.

If the output from a translator is to be saved in the project
hierarchy, then a KEYREF parameter must be used to identify the
target member into which the translator output will be copied.
Specify any output KEYREF value, such as KEYREF=LOAD or OUTx. If
the output from a translator is not to be saved in the project
hierarchy, do not specify a KEYREF parameter; this is essentially
like using IOTYPE=W except that a partitioned data set is allocated
for use by the translator instead of a sequential data set.

If the build is to occur on a workstation, use IOTYPE=P and
DFLTMEM=* to take advantage of workstation build caching.
IOTYPE=P preserves the workstation file’s date and time information
as it is copied to the host. If the output is needed as input for

FLMALLOC Macro

138 z/OS V1R2.0 ISPF SCLM Reference

another build step, the date and time at the host member is
compared the date and time of the corresponding workstation file.
If they match, the file is considered to be the same, and the file is
not transferred.

IOTYPE=P would be used when a translator requires a partitioned
data set. If a translator accepted a sequential data set, IOTYPE=O
would be used.

SCLM determines the names of the members to be copied into the
project hierarchy from the architecture definition being built or
from the DFLTMEM parameter on the FLMALLOC macro. If an
architecture definition member is being built, the name specified in
that member is used. If a source member is being built directly or
as a result of an INCLD architecture statement, the DFLTMEM
parameter on the FLMALLOC macro is used.

If an asterisk is specified for the output member name in the
architecture definition, or no DFLTMEM parameter is specified,
then all members in the temporary data set are copied into the
project hierarchy. Otherwise, only the member that matches the
name on the architecture statement or DFLTMEM parameter is
copied into the project hierarchy.

Example:

Figure 4 on page 134 does not contain an example of IOTYPE=P.
However, if the Assembler, IFOX00, had required a partitioned
data set for the object module instead of a sequential data set, then
the FLMALLOC for the SYSGO DDNAME would have used
IOTYPE=P instead of IOTYPE=O.

IOTYPE=S Allocate a temporary sequential data set and create the input
stream for the translator by concatenating the contents of all the
members that are SINCed as well as any text specified via CMD
cards. Concatenation will occur in the order specified by the
architecture definition. Use the KEYREF parameter to identify the
members from the project hierarchy that will be used to create the
input stream.

When the following criteria are met, SCLM allocates the PDS
member directly from the SCLM-controlled library, rather than
copying the member first to a sequential data set. The criteria are:
v there is only one input
v the input is from a SINC statement
v the KEYREF on the FLMALLOC statement is SINC
v you are not doing input list processing.

Any user-defined translators must take into account that the
DDNAME allocated mignt be either a sequential data set or a PDS
member.

Example:

In Figure 4 on page 134, IOTYPE=S is used to allocate the data set
that will contain the input stream for the translator SYSIN. Refer to
the example for IOTYPE=I for an illustration of what is contained
in architecture definition member FLM01CMD. If this member
were built at DEV1, the SYSIN data set would contain a copy of
member FLM01MD1, type SOURCE. If more than one SINC card

FLMALLOC Macro

Chapter 4. SCLM Macros 139

had been specified, then the source referenced by subsequent SINC
cards would have been appended to the end of SYSIN in the order
specified in the architecture definition.

IOTYPE=U Any preallocated ddname that matches the DDNAME parameter
value will be used. There will be no new ddname allocation. This
is typically used for referring back to a preallocated ddname from
a previous FLMALLOC following a previous FLMTRNSL in the
same language definition. In this situation the DDNAME
parameter values need to be the same.

Ddname substitution lists are useful in situations in which more
than one translator is defined for a language and one translator
needs to use the output from a previous translator. This latter
translator would have an FLMALLOC statement with IOTYPE=U
and the same DDNAME parameter value as the previous
FLMALLOC for a previous FLMTRNSL in the same language
definition. In order to use ddname substitution lists the translator
must be programmed to handle the ddname substitution list and
the FLMTRNSL must have a PORDER value of 2 or 3 to construct
and pass the list to the translator.

Translators that are programmed to use ddname substitution lists
include some compilers, linkage editors, and utilities. These
translators will use the DDNAME parameter value for a data set. If
the DDNAME parameter is not specified the system will generate a
ddname for use in the ddname substitution list.

For PORDER values of 0 or 1 SCLM does nothing. There are no
additional file allocations. At execution time the translator will use
whatever data set has been allocated to the ddname specified by
the translator program.

Example:

Figure 4 on page 134 does not use IOTYPE=U. The sample
language definition for the assembler language only calls one build
translator. However, if this language definition had called a
preprocessor and had PORDER=2 or 3, as shown in Figure 5 on
page 141, the assembler compiler, IFOX00, would want to use the
output from the preprocessor, IFPRE0. It would not be necessary
for IFOX00 to create a data set that would contain the input stream
because this has been prepared by IFPRE0.

FLMALLOC Macro

140 z/OS V1R2.0 ISPF SCLM Reference

IOTYPE=W Allocate a temporary sequential data set for translator use. SCLM
uses the RECFM, LRECL, and RECNUM parameters for allocation
of this data set. If they are not specified, SCLM uses the defaults.

Example:

Figure 4 on page 134 uses IOTYPE=W to allocate SYSUT1. When
the Assembler, IFOX00, is invoked, a sequential data set is created
and allocated to DDNAME SYSUT1. This data set is used
internally by the assembler and it is not necessary to store it in the
project hierarchy. This language definition does not print the
contents of this data set to the build listing data set because the
PRINT keyword was not specified and defaults to N.

*
* BUILD TRANSLATOR(S)
*
*
* --CREATE THE INPUT STREAM FOR THE ASSEMBLER COMPILER--
*
* --ASSEMBLER PREPROCESSOR--

FLMTRNSL CALLNAM='ASM PREPROCESSOR', C
FUNCTN=BUILD, C
COMPILE=IFPRE0, C
PORDER=3, C
OPTIONS=(GROUP=@@FLMGRP, C
TYPE=@@FLMTYP, C
MEMBER=@@FLMMBR)

*
* DDNAME ALLOCATIONS
*

FLMALLOC IOTYPE=W,RECFM=FB,LRECL=80, C
RECNUM=9000,DDNAME=SYSIN

* --CALL THE ASSEMBLER COMPILER TO PROCESS INPUT--
*
* --ASSEMBLER INTERFACE--

FLMTRNSL CALLNAM='ASSEMBLER', C
FUNCTN=BUILD, C
COMPILE=IFOX00, C
VERSION=1.0, C
GOODRC=0, C
PORDER=3, C
OPTIONS=(XREF(SHORT),LINECOUNT(75),OBJECT,RENT)

*
* DDNAME ALLOCATIONS
*
FLMALLOC IOTYPE=U,DDNAME=SYSIN
FLMALLOC IOTYPE=W,DDNAME=SYSUT1,RECNUM=17500
FLMALLOC IOTYPE=W,DDNAME=SYSUT2,RECNUM=15000
FLMALLOC IOTYPE=W,DDNAME=SYSUT3,RECNUM=15000
FLMALLOC IOTYPE=O,DDNAME=SYSGO,KEYREF=OBJ,RECNUM=7500,DFLTTYP=OBJ
FLMALLOC IOTYPE=A,DDNAME=SYSTERM
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=A,DDNAME=SYSPUNCH
FLMCPYLB NULLFILE
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
* ADD ONE FLMCPYLB FOR EACH FLMSYSLB

FLMCPYLB SYS1.MACLIB
FLMALLOC IOTYPE=O,DDNAME=SYSPRINT,KEYREF=LIST,PRINT=Y,

DFLTTYP=SOURCLST,RECNUM=20000
*

Figure 5. Sample Language Definition that Calls a Preprocessor

FLMALLOC Macro

Chapter 4. SCLM Macros 141

When all build translators for this language have completed
processing, SYSUT1 will be deleted. In the preceding example,
when the assembler has completed and returned control to build,
build will deallocate the data set associated with SYSUT1.

The position of the FLMALLOC macros is very important because SCLM can pass
ddnames directly to the translator; see the PORDER field description. SCLM
passes ddnames to the translator in the order of the FLMALLOC macros.

SCLM deallocates temporary data sets after all translators for a particular member
and a particular function (for example, FUNCTN=BUILD, COPY, and PURGE
specified in the FLMTRNSL macro) for a particular language have completed
processing.

To use the output from one translator step as input to another translator step, add
(or modify) an FLMALLOC macro for the second translator step with IOTYPE=U
and DDNAME=ddname allocated for the first translator step. Care should be taken
when adding FLMALLOC macros for the second translator step. Depending on the
PORDER that is specified in the FLMTRNSL macro, it may be necessary to put the
new FLMALLOC macro in a particular position in the list of FLMALLOC macros.
Refer to the documentation for the particular compiler or translator you are calling
to determine whether or not it accepts ddname substitution lists and, if so, what
order it expects the parameters to be passed.

Table 4 indicates the valid IOTYPEs for each function. Note that all IOTYPEs are
valid for a build, and that IOTYPEs A, U, and W are valid for all functions.

Table 4. Valid IOTYPEs for Each Function

IOTYPE Build Copy Parse Purge Verify.

A X X X X X

I X

L X

N X

O X

P X

S X

U X X X X X

W X X X X X

,BLKSIZE=block_size
Block size of the data set. This parameter is valid for IOTYPE=W, O, P, and S.
If this parameter is not specified or is specified as 0 (zero), then the block size
used is the largest integral multiple of the LRECL values that is less than or
equal to 3120. It is recommended that this value match the block size of the
target data set for IOTYPE=P and RECFM=U. This parameter is ignored for
IOTYPE=A, I, L, N, and U.

The IBM linkage editor requires that the DCBS option parameter be passed in
order for the SYSLMOD block size to be used in creating load modules. If the
DCBS option is not specified, the linkage editor creates load modules using the
maximum record size for the device type. Use the OPTIONS= parameter on
the FLMTRNSL macro to pass the DCBS option. Failure to do so can result in
message FLM44507.

FLMALLOC Macro

142 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|

|
|
|
|
|
|

,CATLG=N|Y
Indicates whether a data set is to be cataloged. Valid for IOTYPE=W, O, P, and
S. SCLM temporarily allocates cataloged data sets with a predefined high-level
qualifier, the TSO-prefix. The data set is deleted after all translators complete
their functions. The default is N.

,DDNAME=ddname
The ddname to be used for this allocation. If you do not specify a ddname for
the allocation, SCLM generates one for you. If the PORDER parameter in
FLMTRNSL has the value of 0 or 1, a nonblank value is required for
DDNAME.

A special case occurs when MALLOC=Y is specified. Because MALLOC=Y
implies more than one allocation, you must allow SCLM to generate ddnames
for these allocations. If PORDER=2 or 3, SCLM generates a ddname if the
parameter is omitted. This parameter is not used for IOTYPE=L or IOTYPE=N.

Do not reuse the same ddname in multiple-step language definitions unless
you intend to pass data from one step to the next using IOTYPE=U. If the
same DDNAME is used for multiple translators, only the outputs from the last
translator will be copied to the hierarchy.

,DINIT=N|Y
Indicates whether SCLM should create a member in a temporary data set
allocated with IOTYPE=P. DINIT is ignored for all IOTYPEs except P. If
DINIT=Y, SCLM initializes the member with a single record containing the
string ″DUMMY FILE″ beginning in column 1. The member created will have
the same name as the build map that is created if the translator is successful. If
the MEMBER parameter is specified, its value will be used to determine the
name of the member to initialize. If the MEMBER parameter is not specified,
the member initialized will be the member to be saved in the hierarchy. If the
member will not be saved in the hierarchy, the member initialized will have
the same name as the source or architecture definition controlling the build.

,DIRBLKS=directory_blocks
The number of directory blocks allocated to the data set if the data set is
partitioned (IOTYPE=P). For IOTYPE=P, the default is 1 and for all other
IOTYPEs, the default is 0. SCLM will ignore nonzero values for all IOTYPES
except IOTYPE=P.

,DISP= OLD|SHR|MOD|NEW
Optional parameter used to identify the disposition for the allocation on a DD
card in JCL. Valid values are OLD, SHR, MOD, NEW. If not specified, the
disposition defaults to an appropriate value for the IOTYPE parameter, as
described in Table 5.

Table 5. Valid DISP values for IOTYPE values

IOTYPE Default Valid Values Condition.

A SHR SHR,MOD,OLD With a single copylib

A SHR SHR With multiple copylibs

A SHR SHR,OLD With MALLOC=Y

I SHR SHR

L n/a n/a

N n/a n/a

O OLD NEW,MOD

O SHR SHR,OLD With MALLOC=Y

FLMALLOC Macro

Chapter 4. SCLM Macros 143

Table 5. Valid DISP values for IOTYPE values (continued)

IOTYPE Default Valid Values Condition.

P NEW NEW

S MOD MOD

U n/a n/a

W NEW NEW,MOD

The DISP parameter applies to the temporary data set created by SCLM
instead of the controlled members in the hierarchy for IOTYPE O and P. Refer
to the TSO Extensions Version 2 Command Language Reference for more
information.

This parameter is ignored for IOTYPE L, N, and U.

,DFLTMEM=default_member
Indicates the name for the output member. Use IOTYPE=O or P to allocate
data sets that will be used for translator outputs. If this parameter is not used,
the output member name for IOTYPE=O will be the same as the source
member; for IOTYPE=P all output members will be copied using the
translator-generated member names. SCLM ignores this field during a build if
you use an architecture definition member to build the source member. If you
are using an architecture definition member, define the translator outputs with
an output keyword such as OBJ, OUTx, or LOAD. DFLTMEM is ignored
unless:
1. KEYREF is specified with a valid output keyword.
2. DFLTTYP is specified.
3. IOTYPE is either O or P.

The name of the translator output can be based on the name of the source
input by using an asterisk as a special match character. The asterisk is replaced
by the name of the source member. If the substitution of the source name
would result in a name longer than 8 characters, the source name is truncated
to produce an 8-character name. For example, if the DFLTMEM parameter is
*FM, a source member of EX00G would cause the output to be stored in name
EX00GFM.

,DFLTTYP=default_type
Indicates the name of the SCLM type for translator outputs. Use IOTYPE=O or
P to allocate data sets that will be used for translator outputs. The output
member name is the same as the source member. SCLM ignores this field
during a build if you use an architecture member to build the source member.
If you are using an architecture member, define translator outputs with an
output keyword such as OBJ, OUTx, or LOAD. DFLTTYP is ignored if no
KEYREF is specified.

The type for the translator output can be based on the type of the source input
by using an asterisk as a special match character. The asterisk is replaced by
the type of the source member. If the substitution of the source type would
result in a name longer than 8 characters, the source type is truncated to
produce an 8-character result. If the DFLTTYP parameter is *LST, a source type
of SRC1 would cause the output to be stored in type SRC1LST. The type
specified on this parameter, or the type generated if an asterisk is used, must
be defined to the project definition with the FLMTYPE macro. No verification
of this parameter is performed when the project definition is generated.

FLMALLOC Macro

144 z/OS V1R2.0 ISPF SCLM Reference

,DSNTYPE=PDS|Library
Determines whether a temporary partitioned data set (IOTYPE=P) is allocated
as a PDS or PDSE. Use DSNTYPE=LIBRARY to have the data set allocated as a
PDSE. If you specify DSNTYPE=LIBRARY and your system or project specifies
that temporary data sets should be allocated to VIO, then add the CATLG=Y
parameter to the FLMALLOC macro. This parameter is only valid for
IOTYPE=P. The default value is PDS.

,KEYREF=keyword_reference
Refers to a keyword in the build map or architecture definition. The member
name and type (as denoted in the build map or architecture definition)
associated with the keyword are used by other parameters in this macro:
v If IOTYPE=L, keyword_reference identifies the member name the macro passes

in the ddname substitution list for the translator.
v If IOTYPE=S, keyword_reference identifies the input members for the

translator. For LEC architecture members, the contents of the temporary data
set will depend on the KEYREF specified. If KEYREF is specified as INCL,
an include statement in a format used by the S/370 linkage editor will be
generated for each object member or load module referenced. If KEYREF is
specified as SINC, the contents of each object member will be copied into
the temporary data set. S/370 linkage editor include statements are
generated for each load module specified as input. This is true when
KEYREF=SINC or KEYREF=INCL. Although it will take longer to process
KEYREF=SINC, this can be used to handle object members having large
block sizes or containing linkage edit control statements.

v If IOTYPE=I, keyword_reference determines the type name of the hierarchy to
allocate. The keywords that can be used with IOTYPE=I are SINC, SREF, and
CREF.

v If IOTYPE=O or P, keyword_reference identifies the location in the hierarchy
for build to copy the output created by the translator if the translator is
successful. The keywords that can be used with IOTYPE=O or P are COMP,
LIST, LMAP, LOAD, OBJ, and, OUTx.

,LANG=language
Allows a build output to be assigned a different language than the build input.
If this parameter is not specified, then build outputs are assigned the same
language as inputs.

This parameter is not necessary when you can create in a single build all the
build outputs you want.

Use this parameter when you want the build output of one language definition
to be verified, built, copied, or purged in another language definition.

,MALLOC=N|Y
Use MALLOC=Y when the translator generates a sequential output data set
that has a specific data set name and cannot be allocated to a ddname before
the translator is invoked. This condition might occur if the translator performs
its own allocations and always creates a data set with a specific name. Input
list translators are required to generate output data sets that can be captured
with this type of allocation. For input list processing, one allocation is
performed for each member processed on the input list.

When you specify the FLMALLOC macro with MALLOC=Y, you must also
specify an FLMCPYLB macro that identifies the name of the data set to be
allocated.

FLMALLOC Macro

Chapter 4. SCLM Macros 145

An FLMALLOC with MALLOC=Y is ignored for all iotypes except O and A. If
MALLOC=Y and IOTYPE is not an A and not an O, an error message is
produced. The KEYREF parameter must be specified on the FLMALLOC for
the allocation to occur. If MALLOC=Y is specified, the ddname parameter must
be blank.

,ALLCDEL=N|Y
Indicates that all data sets referenced by this FLMALLOC macro should be
deleted when SCLM has finished processing them. For example, specify
ALLCDEL=Y to indicate that the output listings from the Input List translator
should be deleted after they are copied into the hierarchy. The ALLCDEL
parameter is ignored unless MALLOC=Y is specified.

,LRECL=record_length
Logical record length of the data set (numeric). It is valid for IOTYPE=W, O, P,
and S. The default is 80. It is recommended that this value match the LRECL of
the target data sets for IOTYPE=O or P.

,MEMBER=member_name
Causes a ddname to be allocated to a member of a temporary partitioned data
set created by SCLM. This parameter is valid only for IOTYPE=P.

The member name can be evaluated dynamically by specifying @@FLMONM
or @@FLMMBR as the parameter value. If a KEYREF OUTx parameter is
specified and the architecture definition has a matching OUTx statement, then
SCLM uses the output member name in the architecture definition. If no OUTx
architecture statement is specified, then SCLM uses the name of the member
being built. This can be the name of an architecture definition or the name of a
build input.

This parameter is not necessary for most translators. However, some
translators must know the name of the output member.

,NOSAVRC=no_save_rc
A return code value set by a translator that indicates whether or not SCLM is
to store a translator output in this data set. This parameter is valid for
IOTYPE=O and P. SCLM provides this feature to handle translators that, by
design, have missing or static outputs. If it is decided that these outputs need
not be saved for some situations, then the translators can be written to
recognize these situations and return an appropriate return code. Through the
use of this return code and the NOSAVRC parameter, SCLM will be able to
determine when the output should be saved in the hierarchy and when it
should not. This helps avoid unnecessary rebuilds of some build components.
This parameter, if specified, must have a nonzero positive value; if not
specified, the default is zero.

Note: An example is a translator that can differentiate ‘comment only’ changes
from code changes and determine which outputs are not affected. A
listing is updated but not OBJECT code. SCLM can use this information
to avoid unnecessary work.

,PRINT=N|Y|I
Indicates whether or not the contents of a sequential data set are to be copied
to the SCLM listings data set (userid.BUILD.LISTxx). The contents will only be
copied in the case of an error when the error listings only field is selected on the
build panel. This parameter is only valid for data sets allocated with
IOTYPE=W, S, or O. The valid values are:

N indicates the contents of the temporary sequential data set are not to be
copied to the listings data set. This is the default setting.

FLMALLOC Macro

146 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

Y indicates that the contents of the temporary sequential data set are to
be copied to the listings data set.

I indicates that the contents of the temporary sequential data set are to
be copied to the listings data set. SCLM will open and close the
temporary data set before invoking the translator.

Data sets allocated with PRINT=Y must be opened by the translator.
Otherwise, an ABEND can occur when SCLM attempts to copy the contents to
the build listings data set. For data sets that will not be opened by the
translator, use PRINT=I. As PRINT=I adds an open and close, build
performance can be slightly degraded.

,RECFM=record_format
Record format of the data set. It is valid for IOTYPE=W, O, P, and S. Valid
values are F, FA, FM, FB, FBA, FBM, V, VA, VM, VB, VBA, VBM, and U; the
default is FB (fixed blocks). It is recommended that this value match the
RECFM of the target data sets for IOTYPE=O or P.

,RECNUM=number_of_records
Number of records to be allocated (numeric). It is valid for IOTYPE=W, O, P,
and S. The default is 500.

This parameter is used in the calculation of the primary and secondary space
allocations required for the temporary data set. Space allocations are in blocks
and the number of blocks is determined by the number of records using the
following formula:
(((number_of_records * ((3120 / record_length) + 1)) + 1) / 16) + 1

,VIO=Y|N
Overrides the selection for use of VIO. Y causes the data set to always be
allocated using VIO; N causes the allocation to never use VIO. The default is to
determine use of VIO by comparing the RECNUM specification to the value
for MAXVIO on the FLMCNTRL macro.

Note: The Automatic Class Selection (ACS) routines defined for a DFSMS
installation can override the selection requested by SCLM. Contact your
site’s system programmer for information about how these will interact
on your system.

,INCLS=FLMINCLS_name
Refers to an FLMINCLS macro in the language definition that lists the types to
be allocated. If the FLMLANGL macro for the language has ALCSYSLB=Y, the
FLMSYSLB data sets for the include set will be allocated after the data sets
from the project. This parameter is only valid for IOTYPE=I. If no INCLS=
parameter is specified for IOTYPE=I, the default include set is used to
determine the types for allocation.

Defining a Software Component Using the FLMALLOC Macro
You can specify a software component either with an architecture member or with
the FLMALLOC macros you specified in the language definition. For example, the
language definition for member xxxxxxxx in type SOURCE contains the following
FLMALLOC macros:

FLMALLOC IOTYPE=S,KEYREF=SINC
FLMALLOC IOTYPE=O,KEYREF=LIST,DFLTTYP=LISTING
FLMALLOC IOTYPE=O,KEYREF=OBJ,DFLTTYP=OBJECT

Building the member is the same as building the following architecture definition:

FLMALLOC Macro

Chapter 4. SCLM Macros 147

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

SINC xxxxxxxx SOURCE
LIST xxxxxxxx LISTING
OBJ xxxxxxxx OBJECT

Always use the SINC keyword (on the KEYREF= parameter of the FLMALLOC
macro) to identify the input member. If you need multiple SINC keywords, you
must use an architecture member to specify the software component. Options to
override the translator options (using the PARM and PARMx keywords) also
require that you use an architecture member. You can also use the fields DFLTCRF
and DFLTSRF on the FLMLANGL macro to identify the types to use in resolving
source dependencies.

Example 1
Two data sets are allocated: one to contain the input stream (IOTYPE=S), the other
to contain the output from the translator (IOTYPE=O). The input stream is the
member you specify on the SINC statement of an architecture member. The output
is copied to the member specified with the LIST statement of an architecture
member. The output is also copied to the listing data set for the SCLM function.

FLMALLOC IOTYPE=S,KEYREF=SINC,RECNUM=5000,LRECL=80,RECFM=FB

FLMALLOC IOTYPE=O,KEYREF=LIST,RECNUM=5000,LRECL=133,RECFM=VBA, X
PRINT=Y

Example 2
The hierarchy for the type specified on the SINC statement of an architecture
member is allocated. Two additional data sets are allocated after the hierarchy by
the FLMCPYLB macro.

FLMALLOC IOTYPE=I,KEYREF=SINC
FLMCPYLB SYS1.LINKLIB
FLMCPYLB SYS1.MACLIB

Example 3
The temporary partitioned data set (IOTYPE=P) that will contain the translator
output to be saved into the project hierarchy will be allocated as a PDSE.

FLMALLOC IOTYPE=P,KEYREF=LOAD,RECFM=U,LRECL=0, X
BLKSIZE=6144,RECNUM=5000,DIRBLKS=200,DDNAME=SYSLMOD, X
DSNTYPE=LIBRARY

FLMALTC Macro
With this macro, you can specify control information that is different from that
specified by FLMCNTRL. You can specify different VSAM databases or flexible
data set naming conventions to associate with a group.

When the ALTC parameter of the FLMGROUP macro matches the name of the
FLMALTC macro, only the control information for the VSAM databases and data
set naming conventions defined in the FLMALTC macro are used for that group.

The FLMALTC macro values override the ACCT, ACCT2, DSNAME, EXPACCT,
VERS, VERS2, and VERPDS values from the FLMCNTRL macro. The FLMALTC
macro does not use these values from the FLMCNTRL macro so you must specify
all the parameters you want on the FLMALTC macro statement. Any values not
available to the FLMALTC macor are taken from the FLMCNTRL macro.

FLMALLOC Macro

148 z/OS V1R2.0 ISPF SCLM Reference

Any number of FLMGROUP macros can reference a single FLMALTC macro.
SCLM issues a warning if an FLMALTC macro is defined that is not referenced by
any FLMGROUP macro.

Macro Format
name FLMALTC

ACCT=primary_accounting_data_set

[,ACCT2=secondary_accounting_data_set]

[,DSNAME=dataset_name]

[,EXPACCT=export_account_data_set]

[,VERS=primary_audit_control_data_set]

[,VERS2=secondary_audit_control_data_set]

[,VERPDS=version_pds_name]

Parameters
name

A unique 8-character name used to identify the control information defined by
the FLMALTC macro. The name must be used in conjunction with the ALTC
parameter of an FLMGROUP macro to indicate which set of information
should be used for that group.

ACCT=primary_accounting_data_set
The name of the primary accounting data set to be used by any group
referencing this FLMALTC macro. The data set you specify must be the name
of the VSAM cluster you want to use. No SCLM variables can be used for this
parameter.

,ACCT2=secondary_accounting_data_set
The name of the secondary accounting data set to be used by any group
referencing this FLMALTC macro. Allocate this secondary VSAM data set
following the same criteria as the primary accounting data set. Choose a
unique name for this data set. It should reside on a different volume than the
primary one. If a severe problem occurs with the primary data set (for
example, a head crash on that disk), you can use this backup data set to restore
the primary data set. The default is no secondary accounting data set.

Because additional accounting updates take place if you use this option, the
updates will degrade performance. No SCLM variables can be used for this
parameter.

,DSNAME=dataset_name
This parameter lets you specify the data set naming conventions for the
partitioned data sets controlled by SCLM. The naming convention is specified
as a pattern that can include a subset of the SCLM variables.

The only SCLM variables that can be used in the DSNAME parameter of
FLMALTC are:
v @@FLMPRJ
v @@FLMGRP
v @@FLMTYP

FLMALTC Macro

Chapter 4. SCLM Macros 149

The value specified in this parameter is used to resolve the SCLM variable
@@FLMDSN. If this parameter is not specified, the data set name pattern
defaults to @@FLMPRJ.@@FLMGRP.@@FLMTYP. You can enter up to 44
characters for this parameter, including the SCLM variables and the periods.

If a data set name is specified, it must include the SCLM variable @@FLMTYP.
It is also recommended that the variable @@FLMGRP be used in the data set
name pattern. This helps prevent data from one group overwriting data in
another group.

Note: SCLM does not enforce or guarantee the uniqueness of partitioned
data set names.

The variables can appear in any location within the DSNAME parameter. Any
user-specified qualifiers can also be used. The preceding SCLM variables will
be substituted with values that range from 1 to 8 characters. When determining
the length of the final data set name, assume that the SCLM variables will
contain values that are the maximum (8) number of characters.

Examples of data set name lengths are:
v APPL1.@@FLMGRP.@@FLMTYP is 5 + 1 + 8 + 1 + 8 = 23.
v @@FLMPRJ.@@FLMGRP.@@FLMTYP.COMMON is 8 + 1 + 8 + 1 + 8 + 1 + 6

= 33.

The data set name must meet all of the requirements specified by the MVS
data set naming conventions. If the data set name is too long or it does not
meet MVS data set naming conventions, errors occur during SCLM functions
(for example, build or promote).

,EXPACCT=export_account_data_set
The name of the export accounting data set used by any group referencing this
FLMALTC macro. The data set you specify must be the name of the VSAM
cluster you want to use and must have a different name from any ACCT or
ACCT2 parameter specified in FLMCNTRL or any FLMALTC macro. The
following variables can be used in specifying the name of the export
accounting data set name:
v @@FLMPRJ
v @@FLMGRP
v @@FLMUID

,VERS=primary_audit_control_data_set
The name of the primary audit control data set to be used by any group
referencing this FLMALTC macro. If you do not specify a VERS value, audit
and versioning operations are not performed for the group. If you specify the
VERS keyword and omit the primary_audit_control_data_set name, SCLM
does not verify the name, and errors occur later during processing. If you do
not specify a name, the value is blank.

,VERS2=secondary_audit_control_data_set
The name of the secondary audit control data set to be used by any group in
the project referencing this FLMALTC macro. If you specify the VERS2
keyword and omit the secondary_audit_control_data_set name, SCLM does not
verify the name, and errors occur later during processing. If you do not specify
a name, the value is blank.

FLMALTC Macro

150 z/OS V1R2.0 ISPF SCLM Reference

Because additional audit record updates occur if this option is used, be aware
that overall performance will degrade. Do not specify VERS2 unless you have
specified VERS. If you do, an error will occur when the project definition is
assembled.

,VERPDS=version_pds_name
The name of the partitioned data set to contain the version data. The following
variables can be used when specifying the name of the partitioned data set:
@@FLMPRJ, @@FLMGRP, @@FLMTYP, and @@FLMDSN. For example:
v VERPDS=@@FLMPRJ.@@FLMGRP.@@FLMTYP.VERSION
v VERPDS=@@FLMDSN.VERSION
v VERPDS=@@FLMPRJ.VERSION.@@FLMGRP

This parameter is optional. If you do not specify a value, the value
@@FLMDSN.VERSION is assigned to the parameter (even if versioning is not
active). Refer to the description of the DSNAME parameter for more
information about the value of @@FLMDSN.

If @@FLMDSN is used, it must be specified in the first 8 characters of the
VERPDS= statement to be valid. For example, VERPDS=@@FLMDSN.VERSN12
is valid, but VERPDS=@@FLMPRJ.@@FLMDSN.VERSN12 is invalid. The
VERPDS parameter on the FLMALTC macro can be used to override the
version data partitioned data set for a specific group or set of groups.

You can have only one VERPDS data set per group and type at a time.
However, you can respecify the VERPDS data set name to control the size of
the version data sets. If the VERS=primary audit control data set name remains
the same, a pointer to the VERPDS that holds a particular version allows you
to retrieve and delete versions of members, even if you have changed the
name of the VERPDS data set.

The FLMATVER macro must be used to enable versioning for particular
groups. If you specify a value of 2 or more for the VERCOUNT parameter on
the FLMCNTRL macro, you must specify a separate VERPDS for each group
that you intend to version.

Note: Failure to specify a separate VERPDS for each group can cause retrieval
problems.

Example
PROJXYZ FLMABEG

FLMCNTRL ACCT=PROJXYZ.ACCT.DATABASE

RELCNTL FLMALTC ACCT=PROJ2.ACCT.DATABASE, C
DSNAME=RELEASE.PROJ2.@@FLMGRP.@@FLMTYP

DEVCNTL FLMALTC ACCT=PROJDEV.ACCT.DATABASE, C
DSNAME=SWDEV.@@FLMPRJ.@@FLMGRP.@@FLMTYP

REL FLMGROUP KEY=Y,ALTC=RELCNTL
INT FLMGROUP KEY=Y,PROMOTE=REL
DEV FLMGROUP KEY=Y,PROMOTE=INT,ALTC=DEVCNTL

The DEVCNTL FLMALTC macro defines an alternate accounting database and
data set name to be used by the DEV group that references this macro. The PDS
data sets associated with the DEV group have the naming convention

FLMALTC Macro

Chapter 4. SCLM Macros 151

’SWDEV.PROJXYZ.DEV.type’.

The RELCNTL FLMALTC macro defines an accounting database and data set name
to be used by the REL group that references this macro. The naming convention
used for the PDS data sets associated with the REL group is

’RELEASE.PROJ2.REL.type’.

FLMATVER Macro
Use this macro to enable the audit and version utility and to define the group and
the type of members in that group to record audit and version information for.

You must specify the name of the VSAM data sets to contain the audit information
and the name of the partitioned data sets to contain the versions using the
FLMCNTRL and FLMALTC macros. You can define multiple versioning partitioned
data sets for a project.

Using the group and type defined in the FLMATVER macro, SCLM records
information in the VSAM data set each time a member’s accounting information is
created, updated, or deleted within that SCLM group. This information is a record
that contains the member’s accounting information, the type of operation, the user
ID of the user who performed the operation, and the date and time the operation
occurred.

You can use the FLMATVER macro to store a version of a member. The member is
stored when the particular SCLM operation (such as SAVE) has completed
successfully. The version contains the information to recreate the member as it
previously existed. You can disable the versioning function while maintaining the
audit capabilities. Version information is captured each time an editable member or
an output that is not record format U is created or updated, but not when it is
deleted. Sequence number differences can be ignored by coding the SEQNUM
parameter, otherwise, they are treated as data.

Macro Format
FLMATVER

GROUP=group|*
,TYPE=type|*
[,SEQNUM=STANDARD|STD|COBOL|NONE]
[,VERSION=YES|NO]
[,VERCOUNT=number_to_retain]

Parameters
GROUP|*

The name of the group for which the audit data, version data, or both, is to be
maintained. The group must be defined in the project. Use an asterisk (*) to
indicate all groups.

,TYPE|*
The name of the type for which the audit data, version data, or both, is to be
maintained. The type must be defined in the project. Use an asterisk (*) to
indicate all types.

Audit information can be captured for editable or noneditable types. Version
information can be captured for editable types and non-editable types that are
not record format U. This means that you can maintain version information for
types such as ″source″ and ″object″, but not for load modules or other data that

FLMALTC Macro

152 z/OS V1R2.0 ISPF SCLM Reference

has record format U. Therefore, if you have a project with record format U
data, such as load modules, you should not specify TYPE=* and
VERSION=YES. If you attempt to version data that is record format U, an error
message is issued during SCLM processing.

,SEQNUM=STANDARD|STD|COBOL|NONE
If you specify STANDARD, STD, or COBOL, SCLM ignores sequence number
differences when creating a version of a member.

STANDARD or STD means ignore differences in the last eight columns of the
data for fixed formats, and the first eight columns of the data for variable
formats. In both cases the ignored columns are presumed to be standard
sequence numbers.

COBOL means ignore differences in the first six columns of the data, which are
presumed to be COBOL sequence numbers.

Omitting this parameter, or specifying NONE, indicates that all columns are to
be treated as data.

Note: When changing the value of the SEQNUM specification for a project,
also change the VERPDS specification on the FLMCNTRL or FLMALTC
macros for the affected groups. Failure to do so may cause checksum
verification errors when attempting to recover versions created with the
previous specification (see the CHECKSUM keyword below).

,VERSION=YES|NO
If you specify YES, both the versioning and auditing processes are active. If
you specify NO, versioning is not active; however, the audit process is active. If
not specified, VERSION will default to NO. Version data can be captured for
any editable or non-editable (output) members that are not record format U.

Note: You cannot have versioning without auditing.

,VERCOUNT=number_to_retain
The number of versions to keep in the version partitioned data set for the
group or type specified. If you specify a value of zero (0), then all versions
associated with a member are kept.

If you specify a value of two (2) or more, each time a member is changed the
latest copy of the member is stored and the earliest copy is deleted, so that the
number of versions remains constant. Any audit records that are associated
with versions that have been deleted are retained, but no longer indicate that a
version of the member exists. If you do specify a value of two or more, allocate
a separate VERPDS for each group that has versioning enabled.

Note: Failure to allocate a separate VERPDS for each group can cause retrieval
problems. Use the FLMALTC macro, or use the @@FLMGRP variable in
the VERPDS name.

If a VERCOUNT value is not specified on the FLMATVER macro or if a value
of one (1) is specified, then the value specified using the VERCOUNT
parameter on the FLMCNTRL macro is used. If a VERCOUNT value is not
specified on either macro, then all versions associated with a member are kept.

CHECKSUM=YES/NO
If you specify YES or omit this parameter, checksum verification of versions on
retrieval is in effect.

FLMATVER Macro

Chapter 4. SCLM Macros 153

|
|
|
|
|

|
|
|

In the case of message FLM39220 Return Code 34, which indicates a damaged
version or a version created before SEQNUM support was available in SCLM,
you may do the following to override the checksum verification failure:
v Insert the CHECKSUM=NO parameter.
v Reassemble the project definition.
v Retry retrieval of the version.

Note that the validity of the of the retrieved version is not assured. This
procedure is recommended for emergency use only.

Example
The following statements illustrate how to capture versions of members as well as
auditing information.

The first of the following statements saves versions of members with Typological
and GROUP=PROD, ignoring differences in columns 1–6 where COBOL sequence
numbers are expected. The second statement saves versions of your COPYBOOK
members, including the non-editable members that might have been generated as a
result of building a BMS member. The third statement tells SCLM to keep only the
latest 2 versions of your object modules. This overrides any VERCOUNT specified
on the FLMCNTRL macro for the project.
FLMATVER GROUP=PROD,TYPE=COBOL,VERSION=YES,SEQNUM=COBOL
FLMATVER GROUP=PROD,TYPE=COPYBOOK,VERSION=YES
FLMATVER GROUP=PROD,TYPE=OBJ,VERSION=YES,VERCOUNT=2

Note: If sequence number differences are to be ignored, full length source lines are
saved in the delta file for all lines with non-sequence number differences,
but lines with sequence number differences only are not saved in the delta
file. So, when the version is retrieved, the original sequence numbers for
unchanged lines are lost. Instead, the sequence numbers for the most current
version are retained.

The following saves only the auditing information for members with
TYPE=PASCAL and GROUP=PROD.
FLMATVER GROUP=PROD,TYPE=PASCAL,VERSION=NO

Note: You can omit the VERSION=NO parameter as it is the default. If omitted,
versions of the member will not be saved.

The order of the FLMATVER macros is important to keep in mind. Versioning is
enabled/disabled in the order specified, so after turning versioning off for
GROUP=* or TYPE=*, any later FLMATVER macros that specify a particular
GROUP or TYPE will be ignored.

In the following example, no version will be saved for PROJ.AAA.SOURCE.
FLMATVER GROUP=*,TYPE=*,VERSION=NO
FLMATVER GROUP=AAA,TYPE=SOURCE,VERSION=YES

However, if the two statements are reversed, a version of PROJ.AAA.SOURCE will
be saved.

FLMATVER GROUP=AAA,TYPE=SOURCE,VERSION=YES
FLMATVER GROUP=*,TYPE=*,VERSION=NO

FLMATVER Macro

154 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

|

|

|

|
|

FLMCNTRL Macro
Use this macro to specify project-specific control options. This macro can appear
only once in any project definition. If FLMCNTRL is not specified, it will default to

FLMCNTRL ACCT=project.ACCOUNT.FILE

for any group that does not have internal data sets explicitly defined through the
use of the FLMALTC macro.

Macro Format
FLMCNTRL

[ACCT=primary_account_data_set|project.ACCOUNT.FILE]

[,ACCT2=secondary_account_data_set]

[,EXPACCT=export_account_data_set]

[,VERS=primary_audit_control_data_set]

[,VERS2=secondary_audit_control_data_set]

[,VSAMRLS=NO|YES]

[,VERPDS=version_pds_name]

[,VERCOUNT=number_to_retain]

[,DSNAME=dataset_name_pattern]

[,DASDUNIT=DASD_unit_name|SYSALLDA]

[,VIOUNIT=VIO_unit_name|VIO]

[,MAXLINE=max_line_count|60]

[,MAXVIO=max_vio_count|5000]

[,OPTOVER=N|Y]

[,VERCC=change_code_routine]

[,VERCCDS=change_code_dataset]

[,VERCCCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,VERCCOP=change_code_options]

[,CCVFY=initial_change_code_exit_routine]

[,CCVFYDS=initial_change_code_exit_dataset]

[,CCVFYCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,CCVFYOP=initial_change_code_exit_options]

[,CCSAVE=save_change_code_exit_routine]

[,CCSAVDS=save_change_code_exit_dataset]

[,CCSAVCM=LINK|ATTACH|TSOLNK|ISPLNK]

FLMCNTRL Macro

Chapter 4. SCLM Macros 155

[,CCSAVOP=save_change_code_exit_options]

[,AVDVFY=verify_audit_version_delete_exit_routine]

[,AVDVFYDS=verify_audit_version_delete_exit_dataset]

[,AVDVFYCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,AVDVFYOP=verify_audit_version_delete_exit_options]

[,AVDNTF=notify_audit_version_delete_exit_routine]

[,AVDNTFDS=notify_audit_version_delete_exit_dataset]

[,AVDNTFCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,AVDNTFOP=notify_audit_version_delete_exit_options]

[,BLDINIT=build_initial_user_exit_routine]

[,BLDINIDS=build_initial_user_exit_dataset]

[,BLDINICM=LINK|ATTACH|TSOLNK|ISPLNK]

[,BLDINIOP=build_initial_user_exit_options]

[,BLDNTF=build_notify_user_exit_routine]

[,BLDNTFDS=build_notify_user_exit_dataset]

[,BLDNTFCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,BLDNTFOP=build_notify_user_exit_options]

[,PRMINIT=promote_initial_user_exit_routine]

[,PRMINIDS=promote_initial_user_exit_dataset]

[,PRMINICM=LINK|ATTACH|TSOLNK|ISPLNK]

[,PRMINIOP=promote_initial_user_exit_options]

[,PRMVFY=promote_verify_user_exit_routine]

[,PRMVFYDS=promote_verify_user_exit_dataset]

[,PRMVFYCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,PRMVFYOP=promote_verify_user_exit_options]

[,PRMCOPY=promote_copy_user_exit_routine]

[,PRMCPYDS=promote_copy_user_exit_dataset]

[,PRMCPYCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,PRMCPYOP=promote_copy_user_exit_options]

FLMCNTRL Macro

156 z/OS V1R2.0 ISPF SCLM Reference

[,PRMPURGE=promote_purge_user_exit_routine]

[,PRMPRGDS=promote_purge_user_exit_dataset]

[,PRMPRGCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,PRMPRGOP=promote_purge_user_exit_options]

[,DELINIT=initial_delete_exit_routine]

[,DELINIDS=initial_delete_exit_dataset]

[,DELINICM=LINK|ATTACH|TSOLNK|ISPLNK]

[,DELINIOP=initial_delete_exit_options]

[,DELVFY=verify_delete_exit_routine]

[,DELVFYDS=verify_delete_exit_dataset]

[,DELVFYCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,DELVFYOP=verify_delete_exit_options]

[,DELNTF=notify_delete_exit_routine]

[,DELNTFDS=notify_delete_exit_dataset]

[,DELNTFCM=LINK|ATTACH|TSOLNK|ISPLNK]

[,DELNTFOP=notify_delete_exit_options]

Parameters
ACCT=primary_account_data_set|project.ACCOUNT.FILE

The name of the primary accounting data set for the project. The data set you
specify must be the name of the VSAM cluster you want to use. The default
accounting data set name is project.ACCOUNT.FILE, where project is the project
name specified on the FLMABEG macro. The ACCT parameter on the
FLMALTC macro can be used to override the primary accounting data set for a
specific group or set of groups. No SCLM variables can be used for this
parameter.

,ACCT2=secondary_account_data_set
The name of a secondary accounting data set for the project. Allocate this
secondary VSAM data set following the same criteria as the primary
accounting data set. Choose a unique name for this data set. It should reside
on a different volume than the primary one. If a severe problem occurs with
the primary data set (for example, a head crash on that disk), you can use this
backup data set to restore the primary data set. The default is no secondary
accounting data set. The ACCT2 parameter on the FLMALTC macro can be
used to override the secondary VSAM accounting data set for a specific group
or set of groups.

Because additional accounting updates take place if you use this option, be
aware that the updates will degrade overall performance. No SCLM variables
can be used for this parameter.

FLMCNTRL Macro

Chapter 4. SCLM Macros 157

,EXPACCT=export_account_data_set
The name of the export accounting data set used for exporting or importing
project accounting information. The data set you specify must be the name of
the VSAM cluster you want to use and must have a different name from any
ACCT or ACCT2 parameter specified in FLMCNTRL or any FLMALTC macro.
The default is no export accounting data set. The EXPACCT parameter on the
FLMALTC macro can be used to override the export accounting data set for a
specific group or set of groups. The following variables can be used in
specifying the name of the export accounting data set name:
v @@FLMPRJ
v @@FLMGRP
v @@FLMUID

,VERS=primary_audit_control_data_set
The name of the primary audit control data set for the project. This parameter
is required to perform audit and versioning for groups that do not reference an
FLMALTC macro with VERS specified. If you specify the VERS keyword and
omit the primary_audit_control_data_set name, errors occur later during
processing. The default is no audit control data set.

,VERS2=secondary_audit_control_data_set
The name of the secondary audit control data set for the project. If you specify
the VERS2 keyword and omit the secondary_audit_control_data_set name,
errors occur later during processing. The default is no secondary audit control
data set. The VERS2 parameter on the FLMALTC macro can be used to
override the secondary audit control data set for a specific group or set of
groups.

Because additional audit record updates occur if this option is used, be aware
that overall performance will degrade. Do not specify VERS2 unless you have
specified VERS. If you do, an error will occur when the project definition is
assembled.

,VSAMRLS=NO│YES
Indicates whether or not SCLM should allow the VSAM data sets to be shared
across systems when the level of DFSMS installed is 1.3 or later. The default is
NO.

SCLM uses VSAM Record Level Sharing (RLS) to allow the sharing of the
VSAM data sets. To maintain the integrity of the VSAM data sets in a shared
environment, the VSAM data sets must be allocated for RLS and all hardware
and software to support RLS must be in place for the system. (Refer to the
DFSMS documentation for hardware and software requirements.)

The VSAM data sets cannot be shared under any other condition. Accessing
any of the VSAM data sets from multiple systems when VSAM RLS is not
available can result in the corruption of data, system errors, or other integrity
problems. To avoid these problems, the project manager must allocate the
VSAM data sets so that they cannot be accessed from multiple systems.

,VERPDS=version_pds_name
The name of the partitioned data set to contain the version data. The following
variables can be used when specifying the name of the partitioned data set:
@@FLMPRJ, @@FLMGRP, and @@FLMTYP, or @@FLMDSN. For example:
v VERPDS=@@FLMPRJ.@@FLMGRP.@@FLMTYP.VERSION
v VERPDS=@@FLMDSN.VERSION
v VERPDS=@@FLMPRJ.VERSIO.@@FLMGRP

FLMCNTRL Macro

158 z/OS V1R2.0 ISPF SCLM Reference

This parameter is optional. If you do not specify a value, the value
@@FLMDSN.VERSION is assigned to the parameter (even if versioning is not
active.) Refer to the description of the DSNAME parameter for more
information about the value of @@FLMDSN.

If @@FLMDSN is used, it must be specified in the first 8 characters of the
VERPDS= statement to be valid. For example, VERPDS=@@FLMDSN.VERSN12
is valid, but VERPDS=@@FLMPRJ.@@FLMDSN.VERSN12 is not valid. The
VERPDS parameter on the FLMALTC macro can be used to override the
version data partitioned data set for a specific group or set of groups.

You can have only one VERPDS data set per group and type at a time.
However, you can respecify the VERPDS data set name to control the size of
the version data sets. If the VERS=primary audit control data set name remains
the same, a pointer to the VERPDS that holds a particular version allows you
to retrieve and delete versions of members, even if you have changed the
name of the VERPDS data set.

The FLMATVER macro must be used to enable versioning for particular
groups. If you specify a value of 2 or more for the VERCOUNT parameter on
the FLMCNTRL macro, you must specify a separate VERPDS for each group
that you intend to version.

Note: Failure to specify a separate VERPDS for each group can cause retrieval
problems.

,VERCOUNT=number_to_retain
The number of versions to keep in the version partitioned data set. If you
specify a value of 0 (the default), all versions associated with a member will be
kept. If you specify a value of 2 or more, each time a member is saved or
promoted, the latest copy of the version is stored and the earliest copy is
disposed. Any audit records that were associated with the version are retained
but will no longer indicate that a version of the member exists. If you do
specify a value of 2 or more, allocate a separate VERPDS for each group that
has versioning enabled.

Note: Failure to allocate a separate VERPDS for each group can cause retrieval
problems. Use the FLMALTC macro, or use the @@FLMGRP variable in
the VERPDS name.

If you specify a value of 1, an error will occur when the project definition is
assembled. The only version maintained in this case would be a full source
copy of the member that exists in the project hierachy.

,DSNAME=dataset_name
This parameter lets you specify the data set naming conventions for the project
partitioned data sets controlled by SCLM. The naming convention is specified
as a pattern that can include a subset of the SCLM variables.

The only SCLM variables that can be used in the DSNAME parameter of
FLMCNTRL are:
v @@FLMPRJ
v @@FLMGRP
v @@FLMTYP

The value specified in this parameter is used to resolve the SCLM variable
@@FLMDSN. If this parameter is not specified, the data set name pattern

FLMCNTRL Macro

Chapter 4. SCLM Macros 159

defaults to @@FLMPRJ.@@FLMGRP.@@FLMTYP. You can enter up to 44
characters for this parameter, including the SCLM variables and the periods.

If a data set name is specified, it must include the SCLM variable @@FLMTYP.
It is also recommended that the variable @@FLMGRP be used in the data set
name pattern. This helps prevent data from one group overwriting data in
another group.

Note: SCLM does not enforce or verify the uniqueness of partitioned data
set names.

The DSNAME parameter on the FLMALTC macro can be used to override the
data set naming conventions for a specific group or set of groups.

The variables can appear in any location within the DSNAME parameter. Any
user-specified qualifiers can also be used. The preceding SCLM variables can
contain values up to 8 characters.

Examples of data set name lengths are:
v APPL4.@@FLMGRP.@@FLMTYP is 5 + 1 + 8 + 1 + 8 = 23.
v REL30.COMMON2A.@@FLMGRP.@@FLMTYP is 5 + 1 + 8 + 1 + 8 + 1 + 8 =

32.

The resulting data set name must meet all of the requirements specified by the
MVS data set naming conventions. If the data set name is too long or it does
not meet MVS data set naming conventions, then errors occur during SCLM
functions (for example, Build or Promote).

,DASDUNIT=dasd_unit_name|SYSALLDA
The name of the unit where DASD data sets will reside. The maximum DASD
unit name length is 8 characters. The default is SYSALLDA.

,VIOUNIT=VIO_unit_name│VIO
The name of the unit where a temporary VIO data set will reside. The
maximum VIO unit name length is 8 characters. The default is VIO. For more
information on MAXVIO, see MAXVIO on page 160.

,MAXLINE=max_line_count|60
An integer value indicating the maximum number of lines per page for all
SCLM reports. The minimum value you can specify is 35, and the default is 60.

,MAXVIO=max_vio_count|5000
An integer value indicating the maximum number of records permitted for
VIO allocation. The default is 5000. The maximum value is 2147483647.

,OPTOVER=N|Y
Indicates whether translator option overrides are allowed or disallowed. If
OPTOVER=Y, developers can override the translator options by specifying the
keyword PARMx in the architecture member followed by the new options. The
default is Y. See ISPF Software Configuration and Library Manager (SCLM)
Developer’s and Project Manager’s Guide for more information about PARMx.

,VERCC=change_code_routine
The member name of the change code verification routine. Specify the data set
containing the member in the VERCCDS parameter. If you do not specify the
VERCC parameter, then SCLM does not invoke the exit routine.

,VERCCDS=change_code_dataset
The name of the data set containing the translator load module, REXX exec, or

FLMCNTRL Macro

160 z/OS V1R2.0 ISPF SCLM Reference

CLIST specified by the VERCC parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,VERCCCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the VERCC parameter is the ISPF service that is used to
call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the VERCCOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the VERCCOP parameter.

The default is LINK.

,VERCCOP=change_code_options
Option list to be passed to the VERCC user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, VERCCCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,CCVFY=verify_change_code_exit_routine
The name of the verify change code exit routine. If you do not specify the
CCVFY parameter, SCLM does not invoke the exit routine.

,CCVFYDS=verify_change_code_exit_dataset
The name of the data set containing the translator load module, REXX exec or
CLIST specified by the CCVFY parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters.

,CCVFYCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the exit routine is to be linked, attached, invoked by the TSO
service facility routine or called through ISPF services. Use ATTACH for load
modules unless you need access to ISPF variables or services; in that case, use
LINK. Using LINK can result in loops or out-of-space abends because storage
is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with

FLMCNTRL Macro

Chapter 4. SCLM Macros 161

parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the CCVFY parameter is the ISPF service that is used to
call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the CCVFYOP parameter. The
name of the load module, CLIST, REXX exec or other command is also
specified as part of the CCVFYOP parameter.

The default is LINK.

,CCVFYOP=verify_change_code_exit_options
Option list to be passed to the CCVFY user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimeter between the option string and the
SCLM parameters. End the options string with a non-blank delimeter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, CCVFYCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For a description of
the ISPF SELECT service, refer to the ’ISPF Services Guide’.

,CCSAVE=save_change_code_exit_routine
The name of the save change code exit routine. If you do not specify the
CCSAVE parameter, SCLM does not invoke the exit routine.

,CCSAVDS=save_change_code_exit_dataset
The name of the data set containing the translator load module, REXX exec or
CLIST specified by the CCSAVE parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters.

,CCSAVCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the exit routine is to be linked, attached, invoked by the TSO
service facility routine or called through ISPF services. Use ATTACH for load
modules unless you need access to ISPF variables or services; in that case, use
LINK. Using LINK can result in loops or out-of-space abends because storage
is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the CCSAVE parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the CCSAVOP parameter. The
name of the load module, CLIST, REXX exec or other command is also
specified as part of the CCSAVOP parameter.

The default is LINK.

FLMCNTRL Macro

162 z/OS V1R2.0 ISPF SCLM Reference

,CCSAVOP=save_change_code_exit_options
Option list to be passed to the CCSAVE user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimeter between the option string and the
SCLM parameters. End the options string with a non-blank delimeter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, CCSAVCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For a description of
the ISPF SELECT service, refer to the ’ISPF Services Guide’.

,AVDVFY=verify_audit_version_delete_exit_routine
The name of the audit version delete verification exit routine. If you do not
specify the DELVFY parameter, SCLM does not invoke the exit routine.

,AVDVFYDS=verify_audit_version_delete_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the AVDVFY parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,AVDVFYCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the exit routine is to be linked, attached, invoked by the TSO
service facility routine, or called through ISPF services. Use ATTACH for load
modules unless you need access to ISPF variables or services. In that case, use
LINK. Using LINK can result in loops or out-of-space abends because storage
is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the AVDVFY parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the AVDVFYOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the AVDVFYOP parameter.

The default is LINK.

,AVDVFYOP=verify_audit_version_delete_exit_options
Option list to be passed to the AVDVFY user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, AVDVFYCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.

FLMCNTRL Macro

Chapter 4. SCLM Macros 163

The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,AVDNTF=notify_audit_version_delete_exit_routine
The name of the audit version delete notification exit routine. If you do not
specify the AVDNTF parameter, SCLM does not invoke the exit routine.

,AVDNTFDS=notify_audit_version_delete_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the AVDNTF parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,AVDNTFCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the exit routine is to be linked, attached, invoked by the TSO
service facility routine, or called through ISPF services. Use ATTACH for load
modules unless you need access to ISPF variables or services. In that case, use
LINK. Using LINK can result in loops or out-of-space abends because storage
is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the AVDVFY parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the AVDNTFOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the AVDNTFOP parameter.

The default is LINK.

,AVDNTFOP=verify_audit_version_delete_exit_options
Option list to be passed to the AVDNTF user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, AVDNTFCM, is ISPLNK, the
options string must contain the keywords and parameters for the ISPF SELECT
service. The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,BLDINIT=build_initial_user_exit_routine
The member name of the initial build user exit routine. SCLM invokes the
routine at the beginning of the build process during initialization. Specify the
data set containing the member using the BLDINIDS parameter. If you do not
specify the BLDINIT parameter, then SCLM does not invoke the exit routine.

,BLDINIDS=build_initial_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the BLDINIT parameter. The data set name is not required

FLMCNTRL Macro

164 z/OS V1R2.0 ISPF SCLM Reference

when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,BLDINICM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the BLDINIT parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the BLDINIOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the BLDINIOP parameter.

The default is LINK.

,BLDINIOP=build_initial_user_exit_options
Option list to be passed to the BLDINIT user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, BLDINICM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,BLDNTF=build_notify_user_exit_routine
The member name of the build notification user exit routine. SCLM invokes
the routine at the end of the build process after the build has taken place.
Specify the data set containing the member using the BLDNTFDS parameter. If
you do not specify the BLDNTF parameter, then SCLM does not invoke the
exit routine.

Note: The original format for this user exit, using the BLDEXT1 parameter, is
still supported by SCLM. However, parameters used with this exit
routine must be either ALL old format or ALL new format. Specifying
the user exit routine in both the old and new formats, or mixing old and
new format parameters for the same exit causes errors when the project
definition is assembled.

,BLDNTFDS=build_notify_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the BLDNTF parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

FLMCNTRL Macro

Chapter 4. SCLM Macros 165

,BLDNTFCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the BLDNTF parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the BLDNTFOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the BLDNTFOP parameter.

The default is LINK.

,BLDNTFOP=build_notify_user_exit_options
Option list to be passed to the BLDNTF user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, BLDNTFCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,PRMINIT=promote_initial_user_exit_routine
The member name of the initial promote user exit routine. SCLM invokes this
routine at the beginning of the promote process during initialization. Specify
the data set containing the member in the PRMINIDS parameter. If you do not
specify the PRMINIT parameter, then SCLM does not invoke the exit routine.

,PRMINIDS=promote_initial_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the PRMINIT parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,PRMINICM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out_of_space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parmeter indicates that the TSO service facility

FLMCNTRL Macro

166 z/OS V1R2.0 ISPF SCLM Reference

should invoke the requested translator from an unauthorized environment and
that the translator can be a TSO command, REXX exec, or CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the PRMINIT parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the PRMINIOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the PRMINIOP parameter.

The default is LINK.

,PRMINIOP=promote_initial_user_exit_options
Option list to be passed to the PRMINIT user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, PRMINICM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,PRMVFY=promote_verify_user_exit_routine
The member name of the promote verification user exit routine. SCLM invokes
this routine at the end of the verification phase of the promote process. Specify
the data set containing the member in the PRMVFYDS parameter. If you do
not specify the PRMVFY parameter, then SCLM does not invoke the exit
routine.

Note: The original format for this user exit, using the PRMEXT1 parameter, is
still supported by SCLM. However, parameters used with this exit
routine must be either ALL old format or ALL new format. Specifying
the user exit routine in both the old and new formats, or mixing old and
new format parameters for the same exit causes errors when the project
definition is assembled.

,PRMVFYDS=promote_verify_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the PRMVFY parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,PRMVFYCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

FLMCNTRL Macro

Chapter 4. SCLM Macros 167

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the PRMVFY parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the PRMVFYOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the PRMVFYOP parameter.

The default is LINK.

,PRMVFYOP=promote_verify_user_exit_options
Option list to be passed to the PRMVFY user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, PRMVFYCM, is ISPLNK, the
options string must contain the keywords and parameters for the ISPF SELECT
service. The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,PRMCOPY=promote_copy_user_exit_routine
The member name of the promote copy user exit routine. SCLM invokes this
routine at the end of the copy phase of the promote process. Specify the data
set containing the member in the PRMCPYDS parameter. If you do not specify
the PRMCOPY parameter, then SCLM does not invoke the exit routine.

Note: The original format for this user exit, using the PRMEXT2 parameter, is
still supported by SCLM. However, parameters used with this exit
routine must be either ALL old format or ALL new format. Specifying
the user exit routine in both the old and new formats, or mixing old and
new format parameters for the same exit causes errors when the project
definition is assembled.

,PRMCPYDS=promote_copy_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the PRMCOPY parameter. The data set name is not
required when the translator resides in one of the system concatenation
libraries. The data set name can be up to 44 characters long.

,PRMCPYCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the PRMCOPY parameter is the ISPF service that is
used to call the translator. The only supported value is SELECT. The keywords,

FLMCNTRL Macro

168 z/OS V1R2.0 ISPF SCLM Reference

including the command to run, are specified in the PRMCPYOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the PRMCPYOP parameter.

The default is LINK.

,PRMCPYOP=promote_copy_user_exit_options
Option list to be passed to the PRMCOPY user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, PRMCPYCM, is ISPLNK, the
options string must contain the keywords and parameters for the ISPF SELECT
service. The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,PRMPURGE=promote_purge_user_exit_routine
The member name of the promote purge user exit routine. SCLM invokes this
routine at the end of the copy phase of the promote process. Specify the data
set containing the member in the PRMPRGDS parameter. If you do not specify
the PRMPURGE parameter, then SCLM does not invoke the exit routine.

Note: The original format for this user exit, using the PRMEXT3 parameter, is
still supported by SCLM. However, parameters used with this exit
routine must be either ALL old format or ALL new format. Specifying
the user exit routine in both the old and new formats, or mixing old and
new format parameters for the same exit causes errors when the project
definition is assembled.

,PRMPRGDS=promote_purge_user_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the PRMPURGE parameter. The data set name is not
required when the translator resides in one of the system concatenation
libraries. The data set name can be up to 44 characters long.

,PRMPRGCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the PRMPURGE parameter is the ISPF service that is
used to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the PRMPRGOP parameter.
The name of the load module, CLIST, REXX exec, or other command is also
specified as part of the PRMPRGOP parameter.

FLMCNTRL Macro

Chapter 4. SCLM Macros 169

The default is LINK.

,PRMPRGOP=promote_purge_user_exit_options
Option list to be passed to the PRMPURGE user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, PRMPRGCM, is ISPLNK, the
options string must contain the keywords and parameters for the ISPF SELECT
service. The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,DELINIT=initial_delete_exit_routine
The name of the initial delete exit routine. If you do not specify the DELINIT
parameter, then SCLM does not invoke the exit routine. This routine is only
invoked for the Delete Group (DELGROUP) service or dialog (ISPF Option
10.3.9).

,DELINIDS=initial_delete_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the DELINIT parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,DELINICM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out_of_space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parmeter indicates that the TSO service facility
should invoke the requested translator from an unauthorized environment and
that the translator can be a TSO command, REXX exec, or CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the DELINIT parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the DELINIOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the DELINIOP parameter.

The default is LINK.

,DELINIOP=initial_delete_exit_options
Option list to be passed to the DELINIT user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

FLMCNTRL Macro

170 z/OS V1R2.0 ISPF SCLM Reference

When the call method for the exit routine, DELINICM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,DELVFY=verify_delete_exit_routine
The name of the delete verification exit routine. If you do not specify the
DELVFY parameter, then SCLM does not invoke the exit routine. This exit
routine is invoked for Library Utility Delete (ISPF Option 10.3.1) or the Delete
service.

,DELVFYDS=verify_delete_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the DELVFY parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,DELVFYCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the DELVFY parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the DELVFYOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the DELVFYOP parameter.

The default is LINK.

,DELVFYOP=verify_delete_exit_options
Option list to be passed to the DELVFY user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, DELVFYCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

,DELNTF=notify_delete_exit_routine
The name of the delete notification exit routine. If you do not specify the
DELNTF parameter, then SCLM does not invoke the exit routine. This exit is

FLMCNTRL Macro

Chapter 4. SCLM Macros 171

invoked for Library Utility Delete (ISPF Option 10.3.1), the Delete Group
(DELGROUP) service or dialog (ISPF Option 10.3.9) or Delete service.

,DELNTFDS=notify_delete_exit_dataset
The name of the data set containing the translator load module, REXX exec, or
CLIST specified by the DELNTF parameter. The data set name is not required
when the translator resides in one of the system concatenation libraries. The
data set name can be up to 44 characters long.

,DELNTFCM=LINK|ATTACH|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services. In that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the DELNTF parameter is the ISPF service that is used
to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the DELNTFOP parameter. The
name of the load module, CLIST, REXX exec, or other command is also
specified as part of the DELNTFOP parameter.

The default is LINK.

,DELNTFOP=notify_delete_exit_options
Option list to be passed to the DELNTF user exit routine. You can specify a
maximum of 255 characters for the options, including delimiters. Enclose the
option string in parentheses or single quotes. The options string precedes the
list of parameters passed to the exit routine by SCLM. SCLM removes any
trailing blanks and does not add a delimiter between the option string and the
SCLM parameters. End the options string with a non-blank delimiter so that
the options and parameters can be identified by the exit routine.

When the call method for the exit routine, DELNTFCM, is ISPLNK, the options
string must contain the keywords and parameters for the ISPF SELECT service.
The options must be in the format expected by the service. For more
information about the ISPF SELECT service, refer to the ISPF Services Guide and
Reference.

Example
The following information has been specified: the accounting data set, allocation of
data sets using VIO if the FLMALLOC macro RECNUM parameter is not greater
than 10000 and a verify change code exit routine that is called using ISPLNK.

FLMCNTRL ACCT=PROJ1.ACCOUNT.FILE, X
CCVFY=SELECT, X
CCVFYCM=ISPLNK, X
CCVFYOP='CMD(SAYPARM ,', X
MAXVIO=10000

FLMCNTRL Macro

172 z/OS V1R2.0 ISPF SCLM Reference

FLMCPYLB Macro
The FLMCPYLB macro identifies the name of a data set to be allocated by an
occurrence of the FLMALLOC macro. FLMCPYLB macros that do not immediately
follow either an FLMALLOC macro or another FLMCPYLB macro are ignored.

FLMCPYLB macros for build translators support only a limited set of the variables
that are discussed in Chapter 6. SCLM Variables and Metavariables. For Build
translators, the FLMCPYLB macro must be associated with an FLMALLOC macro
that has its IOTYPE set to A or I. When the FLMCPYLB macro meets these
conditions, the following variables are supported:
v @@FLMDBQ
v @@FLMSRF
v @@FLMPRJ
v @@FLMALT
v @@FLMUID
v @@FLMGRP. For build translators: The value for group in @@FLMGRP will be

the group where the member referenced on the first SINC statement is found if
the architecture definition being built is a CC or Generic architecture definition.
If the architecture definition is an HL or LEC architecture definition, the value
for @@FLMGRB will be the group where the build is taking place.

v @@FLMMBR. The @@FLMMBR variable is replaced with the name of the
member being built. For a CC or a generic architecture definition, it is the name
of the architecture definition.

v @@FLMTYP. The @@FLMTYP variable is replaced with the name of the type of
the member being built. For a CC or generic architecture definition, it is the type
of the architecture definition.

v @@FLMDSN

Macro Format
FLMCPYLB dataset_name|NULLFILE

[,VOL=volser]

Parameters
dataset_name|NULLFILE

Use the FLMCPYLB macro to allocate a data set to a ddname. Place the
FLMCPYLB after an FLMALLOC macro with IOTYPE=I or A. See the IOTYPE
parameter on the FLMALLOC macro for more information. For all other
IOTYPEs, SCLM ignores the data sets, unless MALLOC=Y. When MALLOC=Y,
the IOTYPE can be either O or A. If you specify more than one FLMCPYLB,
SCLM concatenates the data sets in the order they are specified. When you use
them with IOTYPE=I, SCLM allocates the data sets after the type hierarchy
libraries. SCLM can concatenate up to 123 data sets. Thus, when you use
IOTYPE=I, ensure that the number of groups in the hierarchy (primary
groups), plus the number of FLMCPYLB macros you specify does not exceed
123. If you concatenate more than 123 data sets, the project definition
assembles without errors but using it produces unpredictable results.

You can specify partitioned data sets, sequential data sets, or members of
fully-qualified partitioned data sets. Specify NULLFILE for the data set name for
allocation of a dummy data set.

FLMCPYLB data set names can contain the following SCLM variables:

FLMCPYLB Macro

Chapter 4. SCLM Macros 173

|
|

v @@FLMDBQ
v @@FLMSRF
v @@FLMPRJ
v @@FLMALT
v @@FLMUID
v @@FLMGRP
v @@FLMGRB
v @@FLMMBR
v @@FLMTYP
v @@FLMDSN

The specified data set name, or the resulting data set name when SCLM
variables are used, must meet all of the requirements of MVS data set names.
The project definition allows up to 54 characters, including periods and
parentheses, to support a data set with member name specification. A data set
name containing SCLM variables that is longer than this will cause errors
when the project definition is assembled, even if the substituted value meets all
MVS naming conventions. A data set name that is allowed by the project
definition, but does not meet MVS naming convention restrictions (for
example, a data set name without the member specified that is more than 44
characters long), causes errors to occur during SCLM functions like Build.

,VOL=volser
Specifies the serial number of an eligible direct access volume on which the
data set is located. This allows reference to a data set that is either
uncatalogued or that is located on a different volume than the catalog specifies.
The default action, if not specified, is to use the volume in the dataset’s catalog
entry.

Note: If an SMS managed volume is specified, the system will override this
specification with the volume in the catalog entry.

Use of the VOL keyword is mutually exclusive with specification of the
NULLFILE dataset or with MALLOC=Y on the FLMALLOC macro.

Example
The three data sets specified by the FLMCPYLB macro are allocated to the
DDNAME ISPLOAD.

FLMALLOC IOTYPE=A,DDNAME=ISPLOAD
FLMCPYLB PROJ1.INTERNAL.LOAD
FLMCPYLB SYS2.ISPF.LOAD
FLMCPYLB SYS1.LINKLIB

The number of concatenated data sets and the names of the data sets are verified
at run time.

If some includes are coming from system libraries instead of from the hierarchy,
FLMCPYLB macros might be needed to allow the compiler or other build
processor(s) to find those includes. The FLMCPYLB macros are needed if
FLMSYSLB macros are used for the language and the language definition macro
(FLMLANGL) has ALCSYSLB=N. In this case, an FLMCPYLB macro must be
specified for each FLMSYSLB macro.

FLMGROUP Macro
Use this macro to define each group in the project definition. This macro is
required and can be used multiple times.

FLMCPYLB Macro

174 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|

|
|
|
|

Macro Format
name FLMGROUP

[AC=(code1,code2,...)]

[,ALTC=group_control_options]

[,KEY=N|Y]

[,PROMOTE=next_group]

Parameters
name

An 8-character group name.

AC=(code1,code2,...)
A list of authorization codes and authorization groups that defines the
authorization codes for the given group. If any item in the list is an
authorization group, you must have previously defined it with the FLMAGRP
macro.

The first authorization code you specify is the default authorization code used
when a member is introduced to SCLM in this group. Each authorization code
can be up to 8 characters and cannot contain commas. The maximum number
of characters allowed for the authorization code list is 255, including commas
and the delimiting parentheses.

If you omit this parameter, you cannot edit any members in this group. In
addition, no editable members can be promoted into or out of this group.

,ALTC=group_control_options
Specifies an alternate set of control options to be used for this group. The name
must match the name of an FLMALTC macro in the project definition. The
data sets defined on the referenced FLMALTC macro are used to store the
information for this group instead of the data sets specified on the FLMCNTRL
macro. If this parameter is not specified, the group uses the data sets specified
on the FLMCNTRL macro.

,KEY=N|Y
Defines whether the group is a key group or a non-key group. The default is Y.
The KEY parameter does not apply to groups specified with the EXLIBID
parameter.

,PROMOTE=next group
Defines the next higher group within the hierarchy for this group. If you do
not specify it, SCLM does not allow any promotions out of this group.

Example 1
Seven groups are defined for this project definition. The hierarchy consists of five
layers. Groups DEV1 and DEV2 are defined as development groups because no
groups promote to them. All groups except for the TEST group are defined as key
groups. A list of authorization codes are assigned to each group. Group RELEASE
is defined as the highest group in the hierarchy because it does not specify the
PROMOTE parameter.
DEV1 FLMGROUP AC=(R6M0),KEY=Y,PROMOTE=STAGE1
DEV2 FLMGROUP AC=(R7M0),KEY=Y,PROMOTE=STAGE2
STAGE1 FLMGROUP AC=(R6M0,R7M0),KEY=Y,PROMOTE=INT

FLMGROUP Macro

Chapter 4. SCLM Macros 175

STAGE2 FLMGROUP AC=(R6M0,R7M0),KEY=Y,PROMOTE=INT
INT FLMGROUP AC=(R6M0,R7M0),KEY=Y,PROMOTE=TEST
TEST FLMGROUP AC=(R6M0,R7M0),KEY=N,PROMOTE=RELEASE
RELEASE FLMGROUP AC=(R6M0),KEY=Y

Example 2
In the following example:
v The ALTC parameter of the DEV group specifies that the control information

defined by the FLMALTC macro DEVCNTL is used instead of the control
information defined by the FLMCNTRL macro. The PDS data sets associated
with this group have the naming convention SWDEV.PROJXYZ.DEV.type.

v The INT group uses the control information defined by the FLMCNTRL macro.
The data set name used for SCLM-controlled PDS data sets defaults to
@@FLMPRJ.@@FLMGRP.@@FLMTYP, resulting in a naming convention of
PROJXYZ.INT.type for these data sets.

v The accounting database used by the REL group is PROJ2.ACCT.DATABASE as
defined by the RELCNTL FLMALTC macro. The naming convention used for the
PDS data sets is RELEASE.PROJ2.REL.type.

PROJXYZ FLMABEG

FLMCNTRL ACCT=PROJXYZ.ACCT.DATABASE

RELCNTL FLMALTC ACCT=PROJ2.ACCT.DATABASE, C
DSNAME=RELEASE.PROJ2.@@FLMGRP.@@FLMTYP

DEVCNTL FLMALTC ACCT=PROJDEV.ACCT.DATABASE, C
DSNAME=SWDEV.@@FLMPRJ.@@FLMGRP.@@FLMTYP

REL FLMGROUP KEY=Y,ALTC=RELCNTL
INT FLMGROUP KEY=Y,PROMOTE=REL
DEV FLMGROUP KEY=Y,PROMOTE=INT,ALTC=DEVCNTL

FLMAEND

FLMINCLS Macro
Use this macro to associate include sets with types in the project hierarchy. This
association is used to determine the location of include members within the
project. Parsers may be written to associate an include set with each include found
in a source member. This macro indicates to the build function where include sets
can be found and which data sets to allocate for input to build translators. This
macro is part of a language definition. The FLMINCLS macro must follow the
FLMLANG macro for the language definition.

The FLMSYSLB macro is used to specify data sets outside the project that contain
includes. The INCLS parameter value on the FLMSYSLB macro associates the
name of an include set with the FLMSYSLB libraries. The search for an include
member will first take place in the include set and then in the associated
FLMSYSLB.

The default include set is associated with an FLMSYSLB that has no INCLS
parameter. The default include set is specified by an FLMINCLS that has no name
parameter. Only one default FLMINCLS may be specified for each language
definition. SCLM will generate a default include set if one is not specified.

Use the INCLS parameter on an FLMALLOC macro of IOTYPE=I to associate an
FLMINCLS macro with an FLMALLOC macro. If no name is specified on the

FLMGROUP Macro

176 z/OS V1R2.0 ISPF SCLM Reference

FLMINCLS macro, the macro is for the default include set. The default include set
is associated with FLMALLOC macros of IOTYPE=I where no INCLS parameter is
specified.

If an FLMINCLS macro is specified for the default include set, at least one
FLMALLOC macro must reference the default include set (by specifying IOTYPE=I
and no INCLS parameter). If there is no FLMINCLS macro in the language, an
FLMALLOC macro for the default include set is optional.

SCLM ensures that each language definition includes a default include set and a
COMPOOL include set. If the language definition does not include macros to
define these two include sets, the following definitions are generated:

FLMINCLS TYPES=(@@FLMTYP,@@FLMETP)
COMPOOL FLMINCLS TYPES=(@@FLMCRF @@FLMECR)

Macro Format
name FLMINCLS

[SAMEAS=flmincls_name │ TYPES=(list_of_types)]

[CROSLANG=Y│N]

Parameters
name

The name of the include set that is being defined in this macro. An include set
is associated with FLMSYSLB or FLMALLOC when the name matches the
value of an INCLS parameter. In addition, the name may be the name of an
include set returned by a parser for the language that includes this FLMINCLS
macro. Each include set name can only be used once per language definition.

To specify the default include set, leave this parameter blank.

SAMEAS=flmincls_name
The name of another FLMINCLS macro that contains the list of types to search.
If you use this parameter, the include set defined by this macro has the same
list of types as the include set listed on the SAMEAS parameter. You cannot
reference the default include set by specifying SAMEAS= with a blank.

TYPES=(list_of_types)
A list of the types that contain the includes for the include set. Build searches
these types in the order given on this parameter. The hierarchies for each type
are concatenated for use by all FLMALLOC macros that reference this
FLMINCLS macro.

Duplicate types are not removed from the list.

Two SCLM variables can be used on this parameter: @@FLMTYP and
@@FLMETP. The value of @@FLMTYP is the type of the member on the first
SINC statement in an architecture definition or the type of the member if a
single member is being built. The value of @@FLMETP is the extended type of
that member. (See the EXTEND parameter on the FLMTYPE macro).

The value that will be substituted into the @@FLMCRF variable will be the
DFLTCRF type. The value that will be substituted into the @@FLMECR
variable for include set definitions will be the extended type of the DFLTCRF
type. If there is no extended type for the DFLTCRF type, the @@FLMECR
variable will be ignored.

FLMINCLS Macro

Chapter 4. SCLM Macros 177

CROSLANG=Y|N
The CROSLANG parameter indicates whether SCLM processes the includes of
an included member when the included member has a different language from
the source member. Y indicates that includes are processed even if language
boundaries are crossed. N indicates that only the includes of a member of the
same language are processed. The value of the CROSLANG parameter is not
affected by the SAMEAS parameter. The default for CROSLANG is Y.

Following is an example of how includes are processed given the two possible
values for this parameter:

Member Includes

SCRIPT1 language=SCRIPT COBOL1 language=COBOL

COBOL1 language=COBOL INCLUDE1 language=COBOL

INCLUDE1 language=COBOL
none

v If CROSLANG=Y when SCRIPT1 is built, the build processor checks the
dates and times of COBOL1 and INCLUDE1 and puts them in the build
map.

v If CROSLANG=N when SCRIPT1 is built, the build processor checks the
dates and times of COBOL1 and puts them in the build map. The dates and
times of INCLUDE1 are not processed.

Note: If both the SAMEAS and TYPES parameters are omitted for an
FLMINCLS macro, no types are searched for that include set. This can
be used when includes are only in data sets specified by FLMSYSLB
macros or no includes of that type are allowed. Even if no parameters
are specified on an FLMINCLS macro, it must be referenced by at least
one FLMALLOC macro.

Example 1
The following example shows how to define where the includes in the default
include set are found. It indicates that the INCLUDE type is to be searched first,
followed by the source type of the member being processed, and finally by the
extended type of the source member if there is one. The types listed on this macro
are used for all IOTYPE=I FLMALLOC macros where no INCLS parameter is
specified.

FLMINCLS TYPES=(INCLUDE,@@FLMTYP,@@FLMETP)

Example 2
The following example shows how to define where the includes in the MACRO
and COPY include sets are found. It indicates that the MACRO type is the only
type to be searched. Both the MACRO and COPY include sets are referenced by
IOTYPE=I FLMALLOC macros. The IOTYPE=I FLMALLOC macros specify the
allocation for the include hierarchies of the build translators. The MACRO
FLMINCLS does not allow processing of includes across language boundaries. The
COPY FLMINCLS processes the includes because the default value (Y) was not
overridden for the CROSLANG parameter.
MACRO FLMINCLS TYPES=(MACRO),CROSLANG=N
COPY FLMINCLS SAMEAS=MACRO

FLMINCLS Macro

178 z/OS V1R2.0 ISPF SCLM Reference

Example 3
The following example shows how to use different sequences of types for locating
includes. This may be useful in situations in which includes in several different
types have the same name.

FLMLANGL LANG=ABC,VERSION=1
*
* SEQUENCES OF TYPES FOR LOCATING INCLUDES
*
DBRM FLMINCLS TYPES=(DBRMTYPE,@@FLMTYP,@@FLMETP)
SPECIAL FLMINCLS TYPES=(COPYBOOK,SOURCE,MACRO,TOOLS)
*
* PARSER TRANSLATOR
*

FLMTRNSL CALLNAM='ABC PARSE', C
FUNCTN=PARSE, C
COMPILE=FLMLPGEN, C
PORDER=1, C
GOODRC=0, C
OPTIONS=(SOURCEDD=SOURCE, C
STATINFO=@@FLMSTP, C
LISTINFO=@@FLMLIS, C
LISTSIZE=@@FLMSIZ, C
LANG=T)

* (* SOURCE *)
FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMPRJ.@@FLMGRP.@@FLMTYP(@@FLMMBR)

*
* BUILD TRANSLATORS
*

FLMTRNSL CALLNAM='USE DEFAULT', C
FUNCTN=BUILD, C
COMPILE=USEDFLT, C
VERSION=1.0, C
GOODRC=0, C
PORDER=1

*
* DDNAME ALLOCATIONS
* SYSLIB WILL USE DEFAULT OF THE TYPE FOR THE SINC MEMBER AND THE
* EXTENT AS DEFINED IN THE PROJECT DEFINITION
*
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
FLMALLOC IOTYPE=O,DDNAME=SYSLIN,KEYREF=OBJ,RECNUM=5000,DFLTTYP=OBJ
*
*

FLMTRNSL CALLNAM='LOOK AT DBRM', C
FUNCTN=BUILD, C
COMPILE=LOOKDBRM, C
VERSION=1.0, C
GOODRC=0, C
PORDER=1

*
* DDNAME ALLOCATIONS
* SYSLIB WILL USE DBRMTYPE FOLLOWED BY THE TYPE FOR THE SINC MEMBER AND
* THEN THE EXTENT OF THE SINC MEMBER TYPE AS DEFINED IN THE PROJECT
* DEFINITION
*
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC,INCLS=DBRM
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
FLMALLOC IOTYPE=O,DDNAME=SYSLIN,KEYREF=OBJ,RECNUM=5000,DFLTTYP=OBJ
*
*

FLMTRNSL CALLNAM='USE SPECIAL', C
FUNCTN=BUILD, C
COMPILE=IKJSPECL, C

FLMINCLS Macro

Chapter 4. SCLM Macros 179

VERSION=1.0, C
GOODRC=0, C
PORDER=1

*
* DDNAME ALLOCATIONS
* SYSLIB WILL USE COPYBOOK, SOURCE, MACRO, and TOOLS
*
FLMALLOC IOTYPE=I,DDNAME=SYSLIB,KEYREF=SINC,INCLS=SPECIAL
FLMALLOC IOTYPE=S,DDNAME=SYSIN,KEYREF=SINC,RECNUM=2000
FLMALLOC IOTYPE=O,DDNAME=SYSLIN,KEYREF=OBJ,RECNUM=5000,DFLTTYP=OBJ

FLMLANGL Macro
Use this macro to define a language to SCLM. Specify the name of the language
and processing characteristics using the keywords supported by this macro. Specify
the translators to be invoked for this language by using the FLMTRNSL macro
after FLMLANGL.

The order in which data sets of various types are to be allocated for finding
includes may be specified by using one or more FLMINCLS macros. The
FLMALLOC macros following each FLMTRNSL macro are associated with
FLMINCLS macros by use of the INCLS parameter.

Macro Format
FLMLANGL LANG=language

[,ALCSYSLB=N|Y]

[,ARCH=N|Y]

[,BUFSIZE=buffer_size|100]

[,CANEDIT=Y|N]

[,CHKSYSLB=PARSE|BUILD|IGNORE]

[,COMPOOL=N|Y]

[,DEPPRCS=Y|N]

[,DFLTCRF=default_CREF_reference]

[,DFLTSRF=default_source_reference]

[,SCOPE=LIMITED|NORMAL|SUBUNIT|EXTENDED]

[,VERSION=language_version]

[,MBRLMT=0]

Parameters
LANG=language

A user-specified pseudonym for a language. It can be up to 8 characters. It is
stored with the accounting information of editable members. Specify this name
when you first define a member to SCLM.

,ALCSYSLB=N|Y
Indicates whether or not data sets on FLMSYSLB macros are allocated
automatically for IOTYPE=I allocations (see FLMALLOC on page “FLMALLOC
Macro” on page 130). If ALCSYSLB=N, use FLMCPYLB macros for each

FLMINCLS Macro

180 z/OS V1R2.0 ISPF SCLM Reference

FLMSYSLB data set on IOTYPE=I allocations. If ALCSYSLB=Y, FLMSYSLB data
sets are allocated by build following the allocation of the data sets from the
project.

FLMSYSLB data sets are concatenated to the IOTYPE=I allocations for
FLMALLOC macros when both the FLMALLOC and FLMSYSLB macros
specify the INCLS parameter with the same value. If no INCLS parameter is
specified on the FLMSYSLB macro, the FLMSYSLB data sets are concatenated
to the FLMALLOC macros with IOTYPE=I and no INCLS parameter.

,ARCH=N|Y
Indicates whether a member parsed in this language is an architecture member.
The default is N.

,BUFSIZE=buffer_size|100
The number of $list_info records SCLM allocates for a parse, verify, build,
copy, or purge translator. The translator returns dependency information in the
allocated memory. The default size is 100. The buffer_size must be large
enough to accommodate the maximum number of entries returned in $list_info
by any translator including one entry for the END record which is always
required in a $list_info buffer. SCLM requires one record for each include,
change code, user data record, or external dependency the translator returns.

,CANEDIT=Y|N
Indicates whether the language can be assigned to editable members. You
should specify language definitions for linkage editors with CANEDIT=N. The
default is Y.

,CHKSYSLB=PARSE|BUILD|IGNORE
Indicates when SCLM will check the FLMSYSLB data sets to determine if an
include is to be tracked. If CHKSYSLB=PARSE, FLMSYSLB data sets are
checked at parse time. Any includes not found in the hierarchy that are in
FLMSYSLB data sets are not recorded in the accounting record. If
CHKSYSLB=BUILD, FLMSYSLB data sets are checked at build time. Any
includes not found in the hierarchy that are in FLMSYSLB data sets are
recorded in the accounting record but not in the build map. If
CHKSYSLB=IGNORE, any includes not found in the hierarchy at build time
are ignored. They are recorded in the accounting record, but are not recorded
in the build map. The build translator must determine if includes are missing
and generate a return code indicating that the member could not be built.

Use IGNORE for workstation builds when the syslib data sets do not reside in
a location that SCLM can check.

IGNORE can also be used to significantly improve performance when your
system libraries are fairly stable. By specifying IGNORE, you bypass the
overhead of checking all system libraries at either parse or build time. The
performance improvement can be significant, particularly in cases where a
large number of system libraries is specified in the language definition. The
trade-off is that you invoke a translator that will fail when an include is not
found. If your system libraries are fairly stable, it might be better to invoke the
translator when occasionally an include might be missing, than to search all of
the system libraries each time a member is either parsed or built.

,COMPOOL=N|Y
Indicates whether a compool output is required. If COMPOOL=Y is specified,
SCLM verifies that a compool output is generated and saved in the hierarchy.
SCLM issues a warning message if there is no output identified by the COMP
architecture definition keyword.

FLMLANGL Macro

Chapter 4. SCLM Macros 181

,DEPPRCS=Y|N
Indicates whether components depending on the member being built are
rebuilt if some outputs from the translator were not saved for this member.
The default is Y.

,DFLTCRF=default_CREF_reference
Identifies the type that is substituted into the @@FLMCRF variable for
include-set definitions. The @@FLMCRF variable can be used in the list of
types to search for includes. The CREF statement architecture statement can be
used to override this value. If both the CREF statement and DFLTCREF
parameter are omitted the @@FLMCRF variable is ignored.

The value that is substituted into the @@FLMECR variable for include-set
definitions is the extended type of the DFLTCRF type. If there is no extended
type for the DFLTCRF type, the @@FLMECR variable is ignored.

,DFLTSRF=default_source_reference
A type name that can be used to allocate a hierarchical view. This hierarchical
view is typically used by the translator to resolve references to SCLM hierarchy
members. This parameter has no effect unless an FLMALLOC macro with
IOTYPE=I and KEYREF=SREF is used for the language. SCLM ignores this
parameter during a build if a CC, Generic, or LEC architecture definition is
used to build the source member.

,SCOPE=LIMITED|NORMAL|SUBUNIT|EXTENDED
Indicates the minimum scope allowed. SCLM compares this parameter with
the mode specified as input to build and promote functions to allow or
disallow processing. The input mode must be of equal or greater value than
the language scope. Valid scope values, in ascending order, are LIMITED,
NORMAL, SUBUNIT, and EXTENDED. The default is NORMAL.

,VERSION=language_version
The 8-character version name associated with this language. Altering this
parameter causes all source members under this language to be rebuilt. If you
do not specify it, SCLM sets this parameter to blank.

,MBRLMT=0
Indicates the maximum number of source members that can be present in any
input list presented to a translator. SCLM does not exceed the specified
MBRLMT value. If you specify MBRLMT=0, there is no limit on the number of
source members.

Example 1
The language definition for PASCAL is defined.

FLMLANGL LANG=PASCAL,VERSION=1.0,ALCSYSLB=Y

FLMLRBLD Macro
The FLMLRBLD macro causes members with a particular language to be rebuilt
whenever they are promoted into particular groups. Rebuilding is often necessary
when processing changes due to FLMTOPTS or FLMTCOND. The FLMLRBLD
macro is only valid within a language definition; it must follow an FLMLANGL.

During the promotion of a member whose language requests a rebuild with the
FLMLRBLD macro for that particular group, the build map is not copied during
the promote. After the promote completes, the build function is invoked using the
’to group’. The build is conditional and is invoked against the same member that
was promoted. Because the build maps will be missing for members having that

FLMLANGL Macro

182 z/OS V1R2.0 ISPF SCLM Reference

|

|
|
|
|

|
|
|
|
|

language, those members, and any dependent members, will be rebuilt. All other
members will have the build maps copied, and will not be rebuilt during the
conditional build.

If the promote copy succeeds, then the build will take place.

There can be multiple FLMLRBLD macros for each language.

Macro Format
FLMLRBLD
[GROUP=group_list]

Parameters
Group=group_list

This parameter specifies the groups at which promoted members will be
rebuilt. After a member with the language given on the previous
FLMLANGL macro is promoted to one of the listed groups, the member is
conditionally rebuilt. The group list must be enclosed in parenthesis or
single quotes, with a comma and no spaces between the group names. The
list of groups is not checked for validity when the project definition is
assembled, or during build. This allows alternate project definitions to
function without requiring that all groups be defined in the alternate
project definition.

Examples
The following example shows a part of a language definition of a language that
changes translator options at group TEST. The FLMLRBLD macro specifies that
members with language COMPLANG will be automatically rebuilt after a
promotion.

FLMLANGL LANG=COMPLANG,VERSION=1.0,ALCSYSLB=Y
FLMLRBLD GROUP=(PROD)
FLMTRNSL CALLNAM='Compile', X
FUNCTN=BUILD, X
COMPILE=EXAMPLE, X
OPTIONS='ANSI'

FLMTOPTS OPTIONS='ANSI,NODEBUG,OPTIMIZE', X
GROUP=(PROD),ACTION=REPLACE

FLMSYSLB Macro
Use this macro to define a set of system macro or include data sets for an include
set in a language. The data sets defined by FLMSYSLB contain members that are
referenced by SCLM members. Whether or not these include dependencies are
tracked is determined by the CHKSYSLB parameter of the language. These data
sets also can be allocated for the build translator(s) by using the ALCSYSLB
parameter of the language.

Different sequences of data sets may be specified by using the INCLS parameter.
FLMSYSLB macros with the INCLS parameter will be used in conjunction with
FLMALLOC macros that have IOTYPE=I and an INCLS parameter with the same
value. The value of the INCLS parameter is the name of an FLMINCLS macro in
the language definition.

FLMLANGL Macro

Chapter 4. SCLM Macros 183

|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

Macro Format
[language] FLMSYSLB dataset_name

[,INCLS=include set_name]
[,VOL=volser]

Parameters
language

An 8-character language name. The language must be the same name as the
language specified in the LANG field on the FLMLANGL macro. To specify
multiple data sets for a language, omit the language on all but the first data
set.

dataset_name
The partitioned data set or member of a fully-qualified partitioned data set
containing macros or includes from outside the project. The data set name
must meet all of the requirements specified by the MVS data set naming
conventions. The project definition allows up to 54 characters, including
periods and parentheses, to support the specification of a member name. If the
data set name is too long (for example, more than 44 characters for a data set
name without a member specified), or it does not meet the MVS data set
naming conventions, then errors occur during SCLM functions (for example,
Parse or Build). The data sets are searched and allocated in the order that they
occur in the project definition.

,INCLS=include_set_name
This refers to the include-set name on an FLMINCLS macro. When searching
for includes, SCLM first checks the types specified on the FLMINCLS macro,
followed by the data set on this and other FLMSYSLB macros with the same
include-set name. If no INCLS parameter is specified, this FLMSYSLB macro is
used for the default include set. All of the FLMSYSLB statements for an
include set must be specified together.

,VOL=volser
Specifies the serial number of an eligible direct access volume on which the
data set is located. This allows reference to a data set that is either
uncatalogued or that is located on a different volume than the catalog specifies.
The default action, if not specified, is to use the volume in the dataset’s catalog
entry.

Note: If an SMS managed volume is specified, the system will override this
specification with the volume in the catalog entry.

Example
The following example shows the FLMSYSLB macros that might be included in the
project definition for a language that has includes in 3 different include sets.
DBAPPL FLMSYSLB SYS1.COMPILER.INCLUDES

FLMSYSLB SYS1.DATABASE.INCLUDES,INCLS=DATABASE
FLMSYSLB SYS1.TRANSACT.INCLUDES,INCLS=DATABASE
FLMSYSLB APPL.REUSE.INCLUDES,INCLS=REUSE

In this example the includes for members of language DBAPPL will first find their
members in the project hierarchy. If the includes are not found in the project
hierarchy the FLMSYSLB data sets will be searched. Only the FLMSYSLB data sets
that are associated with the same include set as the include will be searched for the
include.

FLMSYSLB Macro

184 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

For example, in the DBAPPL language definition:
1. FLMALLOC with IOTYPE=I and no INCLS parameter will be associated with

SYS1.COMPILER.INCLUDES
2. FLMALLOC with IOTYPE=I and INCLS=DATABASE will be associated with

SYS1.DATABASE.INCLUDES concatenated with SYS1.TRANSACT.INCLUDES
3. FLMALLOC with IOTYPE=I and INCLS=REUSE will be associated with

APPL.REUSE.INCLUDES
4. FLMALLOC with IOTYPE=I and INCLS=XXXXX will not have an associated

FLMSYSLB since there are no FLMSYSLB macros associated with language
DBAPPL that have an INCLS parameter with the value XXXXX

Includes in data sets outside of the project definition can either be tracked in the
accounting record of the member that includes them or not tracked at all.

To track external includes in the accounting record:
1. Specify CHKSYSLB=BUILD or IGNORE in the language definition.
2. Specify an FLMSYSLB for each data set containing included members.
3. Either specify ALCSYSLB=Y in the language definition, or specify each of the

data sets from FLMSYSLB macros on FLMCPYLB macros for the appropriate
ddnames.

When CHKSYSLB is BUILD, SCLM checks the FLMSYSLB data sets at build time.
When CHKSYSLB is IGNORE, the build translator determines if includes are
missing. In either case, any includes not found in the hierarchy are recorded in the
accounting record when the member is parsed.

To not track external includes at all:
1. Specify CHKSYSLB=PARSE in the language definition (the default)
2. Specify an FLMSYSLB for each data set containing included members
3. Either specify ALCSYSLB=Y in the language definition, or specify each of the

data sets from FLMSYSLB macros on FLMCPYLB macros for the appropriate
ddnames.

When CHKSYSLB is PARSE, SCLM verifies at parse time that any includes that are
not found in the project hierarchy can be found in the FLMSYSLB data sets. The
includes found in the FLMSYSLB data sets are not recorded as includes in the
accounting record.

FLMTCOND Macro
The FLMTCOND macro provides a means of running or skipping BUILD
translators based upon the group at which the BUILD takes place and return codes
from previous BUILD translators in the same language definition. The use of
FLMTCOND is similar to the use of the COND keyword parameter on a JCL EXEC
statement. This similarity is restricted by the requirement that multiple uses of
FLMTCOND in a language definition require each corresponding FLMTRNSL
macro to have identical output KEYREF and DFLTTYP keyword values on the
FLMALLOC statements.

The FLMTCOND macro can be used to specify a group, combinations of return
codes from previous BUILD translators in the same language definition, or both in
order to:
v Run one of two BUILD translators

FLMSYSLB Macro

Chapter 4. SCLM Macros 185

|

|

|

|
|
|

|

|

|

|
|
|

v Run or skip a BUILD translator only under certain conditions
v Run or skip several BUILD translators that have the same outputs

An FLMTCOND macro must follow an FLMTRNSL macro with FUNCTN=BUILD.
Only one FLMTCOND macro can be specified for each FLMTRNSL.

The GROUP and NOTGROUP parameters are mutually exclusive. If neither
GROUP nor NOTGROUP is specified, the relations list and action applies to all
groups.

FLMTCOND can be used with the GROUP or NOTGROUP parameters to provide
an IF-THEN-ELSE effect in which only one of two translators is used. The
NOTGROUP keyword can provide flexibility in altering the hierarchy without
similar alterations in the language definitions.

Note: Use of the FLMTCOND statement does not cause a recompile when a
member is promoted to another group, it only specifies actions to be taken if
a build is performed at the new group. To cause a rebuild to occur
automatically, add an FLMLRBLD statement for the language.

Macro Format
FLMTCOND

[GROUP=group_list│NOTGROUP=group_list]
[,WHEN=relations_list]
[,ACTION=RUN│SKIP]

The logic of the GROUP, NOTGROUP, WHEN, and ACTION is shown in the
following illustration:

For specifying GROUP keyword:
IF the BUILD group is in the group_list

AND
WHEN at least one relation is TRUE THEN

DO ACTION
ELSE

DO OTHER ACTION

For specifying NOTGROUP keyword:
IF the BUILD group is NOT in the group_list

AND
WHEN at least one relation is TRUE THEN

DO ACTION
ELSE

DO OTHER ACTION

DEFAULTS:
GROUP = ALL GROUPS
WHEN = TRUE
ACTION = RUN

Parameters
GROUP=group_list

This parameter specifies the groups where the relations list and action are
used.

The group list must be enclosed in parentheses or single quotes with a comma
and no spaces between the group names. The list of groups is not checked for
validity when the project definition is assembled or during build. This allows

FLMTCOND Macro

186 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|

alternate project definitions to function without requiring that all groups be
defined in the alternate project definition.

The other ACTION is taken for build groups not in the group_list.

GROUP=() or GROUP=() specifies an empty group list.

NOTGROUP=group_list
Use this parameter to specify groups to which you do not want the relations
list and action applied.

NOTGROUP=() or NOTGROUP=() specifies an empty group list.

The format of the group_list is the same as for the GROUP parameter.

,WHEN=relations_list
This parameter specifies the conditions under which the translator is run. The
default is TRUE.

The relations_list is (s1,r1,v1) or ((s1,r1,v1),...,(sn,rn,vn)) where:
v si is the translator label for a previous FLMTRNSL macro of a BUILD

translator in the same language definition. An asterisk (*) can be used to
match the previous FLMTRNSL (with or without a translator label) in the
language definition for the BUILD translator that last executed. Using an
asterisk allows you to refer back at run time to the BUILD translator that
was last executed in the language definition at this point. There is no
default.

v ri is a standard relation such as EQ, NE, LT, GT, LE, or GE. There is no
default.

v vi is an unsigned integer with a maximum value of 999999999. This relation
is compared with the return code from a previous Build translator identified
by si in the language definition. There is no default.

At run time, SCLM stops examining the relations in a list as soon as a TRUE
relation is found. Incorrect labels in relations that follow a TRUE relation do
not result in an error message. The relations in a list can be viewed as boolean
values connected by a boolean OR. Build translators that have not executed are
ignored for si = *.

SCLM stops examining previous Build translators for a relation when the label
si is located even if the Build translator did not execute. The relation is
evaluated as FALSE for Build translators that did not execute.

,ACTION=RUN│SKIP
This parameter specifies the action to take at run time.

The decision to RUN or SKIP the translator depends upon the build group, the
GROUP│NOTGROUP parameter, and the WHEN parameter.

All FLMTRNSL macros in a language definition that also use FLMTCOND with a
WHEN keyword must use the same FLMALLOC KEYREF and DFLTTYP keyword
values for all output allocations (KEYREF is OBJ, OUTx, COMP, LIST, LOAD or
LMAP). Use of the same keywords results in an architecture definition that is
correct for all possible return codes at run time.

When the default architecture definition is constructed, SCLM does not know what
the return codes will be at run time. The following assumptions are made:
v The WHEN keyword value contains a TRUE relation.
v The FLMTRNSL macros will not be executed.

FLMTCOND Macro

Chapter 4. SCLM Macros 187

Examples

Code example Result

not specified Run the translator for all groups.

FLMTCOND Run the translator for all groups. This is legal, but has the
same effect as not specifying FLMTCOND.

FLMTCOND ACTION=SKIP Skip the translator for all groups.

FLMTCOND WHEN=(STEP1,EQ,4) Run the translator for all groups if the return code from
the previous translator with label STEP1 equaled 4.

Skip the translator for all groups if the return code from
the previous translator with label STEP1 did not equal 4.

FLMTCOND WHEN=(STEP1,EQ,4),ACTION=SKIP Run the translator for all groups if the return code from
the previous translator with label STEP1 did not equal 4.

Skip the translator for all groups if the return code from
the previous translator with label STEP1 equaled 4.

FLMTCOND NOTGROUP=(FVT,SVT,PROD) Run the translator if the group is not FVT, SVT, or PROD.

Skip the translator if the group is FVT, SVT, or PROD.

FLMTCOND NOTGROUP=(FVT,SVT,PROD),
ACTION=SKIP

Run the translator if the group is FVT, SVT, or PROD.

Skip the translator if the group is not FVT, SVT, or PROD.

FLMTCOND NOTGROUP=(FVT,SVT,PROD),
WHEN=(STEP1,EQ,4)

Run the translator if the group is not FVT, SVT, or PROD
and the return code from the previous translator with
label STEP1 equaled 4.

Skip the translator if the return code from the previous
translator with label STEP1 did not equal 4.

Skip the translator if the group is FVT, SVT, or PROD.

FLMTCOND NOTGROUP=(FVT,SVT,PROD),
WHEN=(STEP1,EQ,4),ACTION=SKIP

Run the translator if the return code from the previous
translator with label STEP1 did not equal 4 or if the
group is FVT, SVT, or PROD.

Skip the translator if the group is not FVT, SVT, or PROD
and the return code from the previous translator with
label STEP1 equaled 4.

FLMTCOND GROUP=(FVT,SVT,PROD) Run the translator if the group is FVT, SVT, or PROD.

Skip the translator if the group is not FVT, SVT, or PROD.

FLMTCOND GROUP=(FVT,SVT,PROD), ACTION=SKIP Run the translator if the group is not FVT, SVT, or PROD.

Skip the translator if the group is FVT, SVT, or PROD.

FLMTCOND GROUP=(FVT,SVT,PROD),
WHEN=(STEP1,EQ,4)

Run the translator if the group is FVT, SVT, or PROD and
the return code from the previous translator with label
STEP1 equaled 4.

Skip the translator if the return code from the previous
translator with label STEP1 did not equal 4.

Skip the translator if the group is not FVT, SVT, or PROD.

FLMTCOND Macro

188 z/OS V1R2.0 ISPF SCLM Reference

Code example Result

FLMTCOND GROUP=(FVT,SVT,PROD),
WHEN=(STEP1,EQ,4),ACTION=SKIP

Run the translator if the return code from the previous
translator with label STEP1 did not equal 4 or if the
group is not FVT, SVT, or PROD.

Skip the translator if the group is FVT, SVT, or PROD and
the return code from the previous translator with label
STEP1 equaled 4.

FLMTOPTS Macro
The FLMTOPTS macro is used to vary the options passed to a build translator
based on the group where the build is taking place. Options can be appended to
the existing options or replace the options completely. FLMTOPTS macros must
follow an FLMTRNSL macro with FUNCTN=BUILD. Multiple FLMTOPTS macros
can be specified for each FLMTRNSL in which case the FLMTOPTS will be applied
in the order they appear in the project definition. The GROUP and NOTGROUP
parameters are mutually exclusive. If neither GROUP nor NOTGROUP is specifed,
the options list and action will apply to all groups.

Note: Use of the FLMTOPTS statement does not cause a recompile when a
member is promoted to another group, it only specifies the options to be
used if a build is performed at the new group. To cause a rebuild to occur
automatically, add an FLMLRBLD statement for the language.

Macro Format
FLMTOPTS OPTIONS=options_list

[,GROUP=group_list│NOTGROUP=group_list]
[,ACTION=APPEND│REPLACE]

Parameters
OPTIONS=options_list

This parameter specifies the options that are added to the end of the existing
options or replace the existing options. See the OPTIONS parameter on the
FLMTRNSL macro for more information on the content and format of options
lists.

,GROUP=group_list
This parameter specifies the groups where the options list and action are to be
applied. If the build group is found in the list then the translator options list
will be updated. The group list must be enclosed in parentheses or single
quotes with a comma and no spaces between the group names. The list of
groups is not checked for validity when the project definition is assembled or
during build. This allows alternate project definitions to function without
requiring that all groups be defined in the alternate project definition.

,NOTGROUP=group_list
This parameter specifies the groups where the options list and action are not to
be applied. If the build group is found in the list then the translator options
list will not be updated. The format of the group list is the same as for the
GROUP parameter.

,ACTION=APPEND│REPLACE
This parameter specifies how the translator options will be updated.

FLMTCOND Macro

Chapter 4. SCLM Macros 189

|
|
|
|

If APPEND (the default value) is specifed the options list will be appended to
the end of the existing options list for the translator. No commas or spaces will
be added between the existing options list and the options list from the
FLMTOPTS macro.

If REPLACE is specified the existing options list will be replaced with the
options list from the FLMTOPTS macro.

Examples
The following example shows a part of a language definition that contains an
FLMTRNSL followed by multiple FLMTOPTS macros. The options passed to the
translator will vary by the group where the build is taking place. If options were
specified in an architecture definition member, they would be added to the end of
the options shown here.

Build Group Options passed to translator

PROD ANSI,NODEBUG,OPTIMIZE,LIST

TEST ANSI,OPTIMIZE,LIST

INT ANSI,LIST

PERFTEST ANSI,OPTIMIZE,TIMER,LIST

others ANSI,DEBUG,NOOPTIMIZE,LIST
FLMTRNSL CALLNAM='Compile', X

FUNCTN=BUILD, X
COMPILE=EXAMPLE, X
OPTIONS='ANSI'

*
FLMTOPTS OPTIONS=',DEBUG,NOOPTIMIZE', X

NOTGROUP=(PROD,TEST,INT),ACTION=APPEND
*

FLMTOPTS OPTIONS='ANSI,OPTIMIZE,TIMER', X
GROUP=(PERFTEST),ACTION=REPLACE

*
FLMTOPTS OPTIONS='ANSI,NODEBUG,OPTIMIZE', X

GROUP=(PROD),ACTION=REPLACE
*

FLMTOPTS OPTIONS=',OPTIMIZE', X
GROUP=(TEST)

*
FLMTOPTS OPTIONS=',LIST'

FLMTRNSL Macro
This macro serves a function similar to JCL EXECUTE (EXEC) statements in your
procedure libraries. Several keyword parameters in this macro contain data
identical to your procedures.

Use this macro once for each translator to be invoked for a language. Specify the
translator load module name, translator load data set name, version of the
translator, and translator options using this macro’s parameters.

Macro Format
[translator label] FLMTRNSL CALLNAM='call_name'

[,FUNCTN=PARSE|VERIFY|BUILD|COPY|PURGE]

,COMPILE=translator_name

FLMTOPTS Macro

190 z/OS V1R2.0 ISPF SCLM Reference

[,DSNAME=translator_dataset_name]

[,GOODRC=good_return_code|0]

[,NOSVEXT=no_save_external_rc|0]

[,OPTFLAG=N|Y]

[,OPTIONS=option_list]

[,PARMKWD=parameter_keyword]

[,PDSDATA=Y|N]

[,PORDER=0|1|2|3]

[,VERSION=translator_version]

[,CALLMETH=ATTACH|LINK|TSOLNK|ISPLNK]

[,TASKLIB=translator_ddname]

[,INPLIST=N|Y]

[,MBRRC=maximum_good_return_code]

Parameters
translator label

A 1- to 8-character string containing no blanks or commas. The translator label
is used by the FLMTCOND macro to identify build translators in a language
definition to examine their return codes at run time for conditional execution
of build translators.

CALLNAM=‘call_name’
The name of the translator with a maximum of 16 characters. This name
appears in SCLM messages along with translator return codes. If you want
imbedded blanks in the call name, surround the string with single quotes.

,FUNCTN=PARSE|VERIFY|BUILD|COPY|PURGE
Identifies the function that the translator performs. The default is PARSE.
v A parse translator gathers statistics and dependencies. Parse translators run

during migration, when the member is saved in an edit session, or when the
SAVE or PARSE service is called. A parse translator can also be used to
define user data and change codes for the member.

v A verify translator can be used to perform validation in addition to default
SCLM validation. The verify translator can be used to check the change
codes or user data defined for members. Another example could be
verification of data that is related to an SCLM-controlled member but is not
under SCLM control itself. Verify translators run during build and promote
verification.
For builds, SCLM invokes a verify translator to verify inputs to build
translators. For example, when an LEC architecture definition is being built,
the source member is verified prior to compiling and the object member is
verified prior to linking.
For promotes, SCLM invokes a verify translator to verify build inputs and
outputs. For example, when an LEC architecture definition is being
promoted, the source, object, and load members are verified prior to the
promote copy phase.

FLMTRNSL Macro

Chapter 4. SCLM Macros 191

v A build translator can assemble, compile, link, or otherwise process a
member so that the outputs have different formats than the inputs. For
example, building a COBOL source program generates a listing and an
object module.

v A copy translator is invoked when Promote copies an SCLM-controlled
member to the next group in the hierarchy. Copy translators are invoked
before Promote copies the SCLM-controlled member. If the copy translators
for a member fail, Promote does not attempt to copy the controlled member.
Copy translators can be used to copy data that is related to an
SCLM-controlled member but is not under SCLM control itself.

v Purge translators can be used to purge data that is related to an
SCLM-controlled member but is not under SCLM control itself. Purge
translators are invoked whenever SCLM performs a delete operation on an
SCLM-controlled member during build or promote.

,COMPILE=translator_name
The entry point name on the translator load module (for example, the name of
the member containing the translator) or REXX exec being invoked.

For CALLMETH of ATTACH, LINK, and TSOLNK, this is a REXX exec, CLIST,
or entry point to a load module. For a CALLMETH of ISPLNK, this must have
a value of SELECT.

,DSNAME=translator_dataset_name
The name of the data set containing the translator load module (COMPILE
parameter) or REXX exec being invoked. The data set name parameter is not
required with the translator load module that resides in the system
concatenation. Use the TASKLIB parameter to specify additional libraries to be
searched. SCLM looks in the data set specified by the DSNAME parameter
first, followed by the data sets allocated to the TASKLIB ddname, if specified,
and then follows the normal MVS search order. The data set name can be up
to 44 characters.

,GOODRC=good_return_code|0
Definition of an acceptable return code from the translator that must be a
positive integer or 0. If you get a return code value greater than
good_return_code from a translator, the process has failed, and no accounting
information is saved in the hierarchy. The default is 0. CALLMETH=TSOLNK
will result in a return code equal to the translator return code for normal
completion, the abend code from the translator, or a 40 in the event of an
IKJEFTSR failure.

,NOSVEXT=no_save_external_rc|0
A return code value indicating whether any translator outputs targeted to an
external data set were saved (valid for FUNCTN=BUILD). Use this parameter in
conjunction with the DEPPRCS parameter on the FLMLANGL macro. It allows
or disallows dependency processing if you save some outputs produced by the
translator.

The build processor determines that external outputs were not saved by the
translator if no_save_external_rc is equal to a translator return code other than
zero. The default is 0.

,OPTFLAG=N|Y
Indicates whether developers can override default translator options. The
default is Y. This parameter has no effect if you specify OPTOVER=N on the
FLMCNTRL macro.

FLMTRNSL Macro

192 z/OS V1R2.0 ISPF SCLM Reference

,OPTIONS=option_list
The default translator options. Delimit the options with single quotes or
parentheses. They can also contain variables to provide dynamic information to
a translator. The maximum length is 255 characters, including delimiters. The
@@FLMMBR and @@FLMTYPE variables will be replaced with the name of the
member and type of the last SINC, INCL, or INCLD statement in the
architecture definition. If a source member is being built, it will be the name of
the source member. See Chapter 6. SCLM Variables and Metavariables. Also see
the following PARMKWD parameter for more information on options.

The IBM linkage editor requires that the DCBS option parameter be passed in
order for the SYSLMOD block size to be used in creating load modules. If the
DCBS option is not specified, the linkage editor creates load modules using the
maximum record size for the device type. Use the OPTIONS= parameter on
the FLMTRNSL macro to pass the DCBS option. Failure to do so can result in
message FLM44507 RC4.

The CALLMETH of ISPLNK requires that the option string contain the
keywords and parameters for the ISPF SELECT service. The options must be in
the format expected by the ISPF SELECT service. For a description of the ISPF
SELECT service, refer to the ISPF Services Guide

,PARMKWD=parameter_keyword
The keyword (PARM0..PARM9) used in architecture members to specify
additional options for this translator.

Note: The complete options list passed to the translator has a maximum length
of 512 characters and has the following format:

string1
,string2
,string3

where

string1
is the options from the OPTIONS parameter on the FLMTRNSL
macro.

string2
is the options from the PARM statements in the architecture
definition.

string3
is the options from the PARMx statements in the architecture
separated by commas.

Extraneous blanks are removed by SCLM.

,PDSDATA=Y|N
Specifies whether the input members for this translator reside in
SCLM-controlled partitioned data sets. The value of this parameter must be Y
for parse and build translators.

If this parameter is not specified, the default varies according to translator
function type. The default for parse, build, and verify translators is Y; the
default for copy and purge translators is N.

If multiple translators are defined for copy and purge functions, you must not
specify Y for one translator and N for another.

FLMTRNSL Macro

Chapter 4. SCLM Macros 193

Note: SCLM PROMOTE will only invoke Copy and Purge translators for
SCLM-controlled partitioned data set members if PDSDATA is set to Y.
Copy and Purge translators that operate on nonpartitioned data set
controlled parts (such as CSP MSLs) must have PDSDATA set to N.

,PORDER=0|1|2|3
An integer indicating the parameter order to the translator. The translator
parameter order must be an integer from 0 to 3. The default is 1. SCLM can
pass two kinds of parameters to the translator: the option list and the ddname
substitution list. The option list contains the translator options (OPTIONS
parameter) concatenated with the options specified in the architecture member
(see PARMKWD parameter). The ddname substitution list contains the
ddnames specified for allocation. See the DDNAME parameter of
“FLMALLOC Macro” on page 130. The following list defines the valid values
for the translator parameter order:
0 No parameters passed
1 Pass option list
2 Pass ddname substitution list
3 Pass option list followed by ddname substitution list

Ddname substitution lists are a feature of many translators (such as
precompilers, utilities, assemblers, and compilers). The correct format of a
ddname substitution list is usually unique for each translator and can be
located in the programming guide for the translator.

The ddname substitution list is a string of ddnames allocated for the translator.
The ddnames appear on the substitution list in the order specified by the
FLMALLOC macros in the language definition. Refer to the appendix,
“Invoking Utility Programs from Application Programs” in the DFSMS Utilities
manual for general information about ddname substitution lists. Refer to the
manuals for the specific translator being invoked for details on the substitution
list contents expected. For IBM supplied compilers, this information is located
in the compiler’s Programmers Guide manual under “Invoking Compiler from
Application Programs” or “Dynamic Invocation of Compiler”. SCLM limits the
size of the ddname substitution list to 512 characters or 64 ddnames.

,VERSION=translator_version
An 8-character representation of the translator version. This parameter is
informational only. SCLM stores this parameter in the account record for each
output member saved from the translators. If you do not specify this
parameter, SCLM sets it to blank.

,CALLMETH=ATTACH|LINK|TSOLNK|ISPLNK
Indicates whether the translator is to be linked, attached, or invoked by the
TSO service facility routine or called through ISPF services. Use ATTACH for
load modules unless you need access to ISPF variables or services; in that case,
use LINK. Using LINK can result in loops or out-of-space abends because
storage is not freed between calls to the translators. The default is ATTACH.

TSOLNK is for translators written as REXX execs. TSOLNK results in the
translator being invoked from IKJEFTSR (TSO service facility routine) with
parameter 1 of x’00010001’. This parameter indicates that the TSO service
facility should invoke the requested translator from an unauthorized
environment and that the translator can be a TSO command, REXX exec, or
CLIST.

ISPLNK is for translators that must have access to ISPF variables or services.
The value specified on the COMPILE parameter is the ISPF service that is used

FLMTRNSL Macro

194 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|

to call the translator. The only supported value is SELECT. The keywords,
including the command to run, are specified in the OPTIONS parameter. The
name of the load module, CLIST, REXX exec or other command is specified in
the OPTIONS parameter.

The following example shows the CALLMETH, COMPILE, and OPTIONS
parameters on an FLMTRNSL macro used to run the FLMLRC37 parser using
ISPLNK:

FLMTRNSL CALLNAM='C PARSE', C
FUNCTN=PARSE, C
CALLMETH=ISPLNK, C
COMPILE=SELECT, C
PORDER=1, C
OPTIONS='PGM(FLMLRC37) PARM(STATINFO=@@FLMSTP,LISTINFO=@C
@FLMLIS,LISTSIZE=@@FLMSIZ)'

,TASKLIB=translator_ddname
The ddname associated with one or more data sets that contain the translator
load module. The data sets must be specified using an FLMALLOC macro
with DDNAME=translator_ddname. When specified for a translator using a
DDNAME substitution list, the TASKLIB allocation does not appear in the list
passed to the translator.

TASKLIB is only valid for CALLMETH=ATTACH. The operating system
searches for executable members in the specified DSNAME parameter, then in
the TASKLIB concatenation, and then in the system concatenation.

,INPLIST=N|Y
Indicates that this translator supports Input List Processing. You must specify
INPLIST=Y to use the IBM Ada/370 Compiler input list function.

,MBRRC=maximum_good_return_code
Use this parameter in conjunction with the INPLIST parameter. MBRRC
indicates the maximum value of the good_return_code for each member in the
Input List. This parameter is similar in function to the GOODRC parameter for
the translator. However, the GOODRC parameter applies to a single return
code supplied by the translator. The MBRRC parameter indicates the maximum
valid value for any member of the Input List.

Examples
A translator for the Pascal compiler is defined. The compiler is member PASCALVS
in data set SYS2.VSPASCAL.LOAD. The translator can only be invoked by the build
processor (FUNCTN=BUILD). The build processor refers to the compiler by its call
name, PASCAL COMPILER. Only the option list can be passed to the translator
(PORDER=1). The default options for this translator are specified by the OPTIONS
parameter. Build considers any translator return code greater than 0 as an error
(GOODRC=0).

FLMTRNSL CALLNAM='PASCAL COMPILER', X
FUNCTN=BUILD, X
COMPILE=PASCALVS, X
DSNAME=SYS2.VSPASCAL.LOAD, X
VERSION=1.0, X
GOODRC=0, X
PORDER=1, X
OPTIONS='NOXREF,CHECK,LINECOUNT(75),NOOPT'

FLMTRNSL Macro

Chapter 4. SCLM Macros 195

FLMTYPE Macro
Use this macro to define each type in the project definition. This macro is required
and can be used multiple times in a project definition.

Macro Format
name FLMTYPE [EXTEND=extended_type]

Parameters
name

An 8-character type name.

EXTEND=extended_type
An 8-character name that can be used as an alternate type when resolving
include dependencies.

The type specified for the EXTEND parameter is substituted into the
@@FLMETP variable on FLMINCLS macros in language definitions. The
@@FLMETP is used to define the types that are searched to find included
members.

Example
Six types are defined. Type SOURCE2 is an extension of type SOURCE. In SCLM,
if a member exists in type SOURCE, its included dependencies can exist in either
SOURCE or SOURCE2.

OBJ FLMTYPE
LIST FLMTYPE
LMAP FLMTYPE
LOAD FLMTYPE
SOURCE FLMTYPE EXTEND=SOURCE2
SOURCE2 FLMTYPE

FLMTYPE Macro

196 z/OS V1R2.0 ISPF SCLM Reference

Chapter 5. SCLM Translators

This chapter describes the translators delivered with SCLM. The translators are
used in language definitions shipped with SCLM. You can modify these language
definitions for the specific needs of your site and environment. The supplied
parsers might not recognize all syntax rules for a specific language, and you might
have to modify statements to adhere to generic syntax.

Table 6. Translators

Translator Page

FLMCSPDB “FLMCSPDB DB2 Bind/Free Translator” on
page 199

FLMDTLC “FLMDTLC DTL Processor Build Translator” on
page 202

FLMLPCBL “FLMLPCBL COBOL Parser” on page 203

FLMLPFRT “FLMLPFRT FORTRAN Parser” on page 206

FLMLPGEN “FLMLPGEN General Purpose Parser” on page 210

FLMLRASM “FLMLRASM REXX Assembler Parser” on page 214

FLMLRCBL “FLMLRCBL REXX COBOL Parser” on page 218

FLMLRCIS “FLMLRCIS MVS C/C++ parser with include set
support” on page 222

FLMLRC2 “FLMLRC2 C, C++, and Resource file parser for
workstation source” on page 225

FLMLRC37 “FLMLRC37 REXX C370 Parser” on page 228

FLMLRDTL “FLMLRDTL REXX DTL Parser” on page 232

FLMLRIPF “FLMLRIPF Script and OS/2 IPF Source Parser” on
page 233

FLMLSS “FLMLSS General Purpose Parser” on page 236

FLMLTWST “FLMLTWST Workstation Build Translator” on
page 240

FLMTBMAP “FLMTBMAP Build Map Print - Build Translator”
on page 256

FLMTMSI “FLMTMSI Interface to SCRIPT/VS” on page 258

FLMTPRE “FLMTPRE” on page 259

FLMTPST “FLMTPST” on page 261

FLMTXFER “FLMTXFER Workstation Transfer - Build
Translator” on page 263

There are five types of translators:
v A parse translator gathers statistics and dependencies. Parse translators run

during migration, when the member is saved in an edit session, or when the
SAVE or PARSE service is called. A parse translator can also be used to define
user data and change codes for the member.

v A verify translator can be used to perform validation in addition to default
SCLM validation. The verify translator can be used to check the change codes or
user data defined for members. Another example could be verification of data

© Copyright IBM Corp. 1990, 2001 197

that is related to an SCLM-controlled member but is not under SCLM control
itself. Verify translators run during build and promote verification.
For builds, SCLM invokes a verify translator to verify inputs to build translators.
For example, when an LEC architecture definition is being built, the source
member is verified prior to compiling and the object member is verified prior to
linking.
For promotes, SCLM invokes a verify translator to verify build inputs and
outputs. For example, when an LEC architecture definition is being promoted,
the source, object, and load members are verified prior to the promote copy
phase.

v A build translator can assemble, compile, link, or otherwise process a member so
that the outputs have different formats than the inputs. For example, building a
COBOL source program generates a listing and an object module.

v A copy translator is invoked when Promote copies an SCLM-controlled member
to the next group in the hierarchy. Copy translators are invoked before Promote
copies the SCLM-controlled member. If the copy translators for a member fail,
Promote does not attempt to copy the controlled member. Copy translators can
be used to copy data that is related to an SCLM-controlled member but is not
under SCLM control itself.

v Purge translators can be used to purge data that is related to an
SCLM-controlled member but is not under SCLM control itself. Purge translators
are invoked whenever SCLM performs a delete operation on an
SCLM-controlled member during build or promote.

198 z/OS V1R2.0 ISPF SCLM Reference

FLMCSPDB DB2 Bind/Free Translator

Purpose
This is the DB2 Bind/Free translator to be used for binding and freeing DB2 plans.
It is necessary to create a DB2 CLIST that will specify the DBRMs to be bound
with the DB2 plan, as well as the name of the DB2 plan. An example of these can
be found in ISPF Software Configuration and Library Manager (SCLM) Developer’s and
Project Manager’s Guide.

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual usage of the

parameters for the translator.

The following keyword parameters are expected as input for the translator:

ALTPROJ
The variable name for the alternate project name. This parameter is required,
and must be set to @@FLMALT.

DBRMTYPE
The type name where the DBRMs are stored. This parameter is required.

Note: The FLMDBALC CLIST is run by the FLMCSPDB translator to allocate
the DBRM type to the DBRMLIB DD name.

FUNCTN
The SCLM function invoking the translator: BUILD, COPY, or PURGE. This
parameter is required.

GROUP
The variable name for the build group name. This parameter is required, and
must be set to @@FLMGRP.

MEMBER
The variable name for the DBRM member name. This parameter is required,
and must be set to @@FLMMBR.

OPTION
The operation to be performed with the DB2 Plan: BIND or FREE. This
parameter is required.

PROJECT
The variable name for the project name. This parameter is required, and must
be set to @@FLMPRJ.

SCLMINFO
The variable name for the SCLM internal pointer. This parameter is required,
and must be set to @@FLMINF.

TOGROUP
The variable name for the group to promote to. This parameter is required,
and must be set to @@FLMTOG. This variable is ignored for FUNCTN=BUILD.

Return Codes

Chapter 5. SCLM Translators 199

0

Explanation: Success

User response: None.

Project manager response: None.

4

Explanation: A WARNING message was produced.

User response: Look at the message. Fix the problem
if necessary.

Project manager response: None.

01300

Module: FLMCSPDB

Explanation: The FUNCTN parameter is not specified
correctly in the input options defined for the translator.
This parameter is one of the OPTIONS parameters for
this translator. This parameter is passed to the
translator by way of the OPTIONS= parameter for calls
to the FLMCSPDB translator. This parameter is not to
be confused with the FUNCTN= parameter passed to
SCLM using the FLMTRNSL macro; rather, it is a
secondary parameter value for the OPTIONS=
parameter that is passed to the translator using the
FLMTRNSL macro.

User response: None.

Project manager response: Verify that
“OPTIONS=(FUNCTN=BUILD...)” or
“OPTIONS=(FUNCTN=PROMOTE...)” is specified for
the FLMTRNSL macro invoking the FLMCSPDB
translator.

01310

Module: FLMCSPDB

Explanation: The OPTION parameter is not specified
correctly in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“OPTION=BIND” or “OPTION=FREE” is specified as
an option for the translator in the language definition.

01320

Module: FLMCSPDB

Explanation: The GROUP parameter is not specified
in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“GROUP=@@FLMGRP” is specified as an option for
the translator in the language definition.

01330

Module: FLMCSPDB

Explanation: The TOGROUP parameter is not
specified in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“TOGROUP=@@FLMTOG” is specified as an option for
the translator in the language definition.

01340

Module: FLMCSPDB

Explanation: The MEMBER parameter is not specified
as a PARM input for the translator.

User response: None.

Project manager response: Verify that
“MEMBER=@@FLMMBR” is specified as an option for
the translator in the language definition.

Verify that OPTOVER=Y on the FLMCNTRL macro in
the project definition.

01350

Module: FLMCSPDB

Explanation: The SCLMINFO parameter is not
specified in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“SCLMINFO=@@FLMINF” is specified as an option for
the translator in the language definition.

01360

Module: FLMCSPDB

Explanation: The DBRMTYPE parameter is not
specified in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“DBRMTYPE=dbrmtype” is specified as an option for
the translator in the language definition. Where
dbrmtype has been defined as a valid type in the
project definition.

01370

Module: FLMCSPDB

Explanation: An error occurred while executing the
DB2 CLIST member.

User response: Verify that DB2 is installed and that
you have invoked it correctly from the DB2 CLIST.
Trace the execution of your CLIST to verify the return
code.

200 z/OS V1R2.0 ISPF SCLM Reference

Project manager response: None.

01380

Module: FLMCSPDB

Explanation: The DB2 CLIST member does not
contain DSN commands for the group being processed.

User response: Verify that the DB2 CLIST member has
code specifying the DSN commands required for the
group being processed.

Project manager response: None.

01390

Module: FLMCSPDB

Explanation: The PROJECT parameter is not specified
in the input options defined for the translator.

User response: None.

Project manager response: Verify that
“PROJECT=@@FLMPRJ” is specified as an option for
the translator in the language definition.

01420

Module: FLMCSPDB

Explanation: The data set allocation (DSALLOC)
service failed.

User response: Contact the project manager.

Project manager response: Verify that SCLM skeleton
FLMLIBS has all necessary allocations for the CSP/AD
and/or DB2 products.

21310

Explanation: SCLM received an error initializing the
DB2 CLIST.

User response: None.

Project manager response: Verify that the DB2 CLIST
exists.

21320

Explanation: SCLM received an error initializing the
DB2 OUT data set.

User response: None.

Project manager response: Verify that the DB2 OUT
data set exists.

21330

Explanation: SCLM received an error when it
attempted to copy the DB2 CLIST to the DB2 OUT data
set.

User response: None.

Project manager response: Verify that the DB2 OUT
data set attributes are complementary with the DB2
CLIST dataset.

21340

Explanation: SCLM could not find the FLMPROXY
ddname.

User response: None.

Project manager response: Verify that the FLMPROXY
ddname was passed to the translator.

21370

Explanation: Non-key groups are not supported.

User response: None.

Project manager response: Delete non-key groups or
re-specify non-key groups as key groups in the project
definition. See return code 30108 for more detail.

Chapter 5. SCLM Translators 201

FLMDTLC DTL Processor Build Translator

Purpose
This is the DTL Processor Build translator. It is called from SCLM builds of ISPF
Dialog Tag Language to invoke the DTL Conversion Utility.

Parameters
The following parameters are expected as input for the translator:
v Project level qualifier of source data set
v Group level qualifier for the build level of the source data set
v Type level qualifier for the source data set
v Member name of source DTL
v ISPF application-id.

The following are the outputs expected:
v Log listing with ISPDTLC information (FLMDTLC)
v Generated panel ($PANELS)
v Generated message member ($MSGS)
v Generated keylist member or command table ($TABLES).

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: DTL completed with a return code of 8.

User response: Only warnings were found during the
DTL conversion. Check the DTL source code.

Project manager response: None.

8

Explanation: DTL completed with a return code of 16.

User response: At least one error was found during
DTL conversion. Check the DTL source code.

Project manager response: None.

16

Explanation: DTL returned a return code of 20. Fatal
error.

User response: Check the DTL source code.

Project manager response: None.

20

Explanation: DTL returned an unknown return code.

User response: Contact the project manager.

Project manager response: Review the messages in
the DTL log. Contact IBM support if necessary.

202 z/OS V1R2.0 ISPF SCLM Reference

FLMLPCBL COBOL Parser

Purpose
This is the COBOL parser translator that parses the source identified by the
SOURCE DDNAME.

Functions
One of the functions of an SCLM parser is to determine all of a module’s
dependencies. FLMLPCBL determines all of the names that will be copied into the
COBOL source.

FLMLPCBL examines each line of the member. Lines located in the
IDENTIFICATION DIVISION (ID DIVISION) will not be examined for COPY
statements or quoted strings. This will permit the use of a comment entry for each
paragrah in the ID DIVISION without the need for an asterisk or slash in column
7.

The parser uses the following syntax rules to locate dependency names outside of
the ID DIVISION:
v The search for tokens is restricted to columns 8–72. Column 7 is ignored except

when it contains * and / (treated as a comment line) or - (treated as a
concatenation). The use of - to concatenate strings for forming reserved words or
dependency names is not supported.

v DBCS strings (delimited by shift-out and shift-in characters) in comments and
quotes are allowed.

v When an uncommented, noncontinuation line has COPY after column 7, the next
token is taken as the name of a dependency. Note the following exceptions:
– If the member name is enclosed in single or double quotes, the quotes are

ignored.
– When an uncommented, noncontinuation line has EXEC, SQL, and INCLUDE

as its first three tokens after column 7, the next token is taken as the name of
a dependency.

– When searching for the next token on a line and there are no more tokens on
that line, the search continues with the next uncommented line.

– Tokens inside quoted strings will be ignored (except for COPY member
names). Reserved words inside quoted strings will not be counted as
statements. COPY, EXEC SQL, and EXEC CICS* inside quoted strings will be
ignored.

– If a token is longer than 8 characters, it will not be added as a dependency.

FLMLPCBL recognizes COPY MEMBER where MEMBER is a 1- to 8-character
string with no separator periods. A separator period is not required after MEMBER.

COPY and MEMBER must be on the same line or on a continued line. However,
splitting COPY or MEMBER by using a hyphen (-) in column 7 of the continued
line is not supported. This is important to consider when using code generators
that use the hyphen in column 7 to concatenate strings to form keywords and text
names. Use of the hyphen to concatenate strings in order to form a MEMBER as in
COPY MEMBER results in the COPY being ignored by FLMLPCBL. Use of the
hyphen on the line after COPY when COPY is the last token on the line results in
the COPY being ignored by FLMLPCBL.

Chapter 5. SCLM Translators 203

FLMLPCBL can parse an odd number of quote delimiters if the first two nonblank
characters after column 7 on a continuation line are two quote delimiters.
FLMLPCBL expects to find an even number of quote delimiters in a literal. You
might need to introduce a constant with a literal value that is also continued on
the next line to produce an even number of quote delimiters. If you have an odd
number of quote delimiters, the dependencies following the odd number of
delimiters might be ignored. The following example illustrates a statement with an
odd number of quote delimiters:
123456 VALUE 'This literal has a quote in column 72 and the next '
123457 '' 2 quote delimiters result in an odd number of quote
123458 delimiters for this statement '.

The parser also gathers statistics or metrics for each module to be parsed. SCLM
saves 10 statistics, but this parser only generates 7. For COBOL, this parser defines
the following statistics:

Total lines The total number of records in the file.

Comment lines The number of lines with a slash (/) or an asterisk (*) in
column 7.

Noncomment lines The number of total lines minus the number of comment
lines.

Blank lines The number of lines that contain only blanks after column 6.
Any sequence numbers in the rightmost columns of the line
are ignored.

Prolog lines The number of comment lines that are found before the first
noncomment line.

Total statements The number of noncomment, noncontinuation lines whose
first token after column 7 is one of the following reserved
words:

ACCEPT EVALUATE PERFORM
ADD EXAMINE READ
ALTER EXIT RELEASE
CALL GO RETURN
CANCEL GOBACK REWRITE
CLOSE GOTO SEARCH
COMPUTE IF SET
CONTINUE INITIALIZE SORT
COPY INSPECT START
DELETE MERGE STOP
DISPLAY MOVE STRING
DIVIDE MULTIPLY SUBTRACT
ENTER NOTE TRANSFORM
ENTRY ON UNSTRING

OPEN WRITE

In addition, any EXEC SQL and EXEC CICS statements are
treated as program statements.

Comment statements This value is always 0.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This is the same as Total statements.

Parameters
The following positional parameters, separated by commas, are expected as input
to FLMLPCBL:

204 z/OS V1R2.0 ISPF SCLM Reference

@@FLMLIS
The address of the dependencies pointer. This parameter is required.

@@FLMSIZ
The size of the dependency list buffer in bytes. This parameter is required.

@@FLMSTP
The address of the statistics output buffer. This parameter is required.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency list does not match the
source code for one of the following reasons:
v Truncation to 8 characters
v No trailing quotation mark to match a leading

quotation mark
v Token consists of only 1 quotation mark
v Token consists of only 2 quotation marks
v Token is split between 2 lines using a hyphen in

column 7 for concatenation

The dependency is not added to the list. Processing
continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Reassemble and relink
the project definition.

12

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters on the FLMTRNSL macro for the
FLMLPCBL parser are valid.

16

Explanation: A GETMAIN error for I/O storage
occurred Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

20

Explanation: A severe error occurred. The source to be
parsed cannot be opened or the LRECL is less than 16.
Processing stops.

User response: Contact the project manager.

Project manager response: Verify the LRECL of the
source file is 16 or greater.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

Chapter 5. SCLM Translators 205

FLMLPFRT FORTRAN Parser

Purpose
This is the FORTRAN parser translator that parses the source identified by the
SOURCE DDNAME.

Using FLMLPFRT
The FORTRAN parser uses the following rules:
v Source must be fixed 80 and must be of the fixed form input format. Comment

characters (’C’ and ’*’) are recognized in column 1, continuation characters are
recognized in column 6, and source statements are recognized in columns 7-72.

v Includes recognized are of the forms
INCLUDE (NAME)
EXEC SQL INCLUDE NAME

v INCLUDE statements can span lines if continuation characters are used.
v EXEC SQL INCLUDE statements are recognized and dependencies are generated

(SQLCA and SQLDA are not flagged as external dependencies). SQL includes
can span lines if continuation characters are used. All other EXEC statements are
not flagged as a dependency.

v Comments and the contents of quoted strings are ignored.
v DBCS strings (delimited by shift-out and shift-in characters) in comments and

quotes are allowed.

FLMLPFRT collects the following statistics about the source to be parsed:

Total lines The total number of records in the file.

Comment lines The number of lines with a (C) or an asterisk (*) in column 1
plus continued comments. A continued comment is a line
that has a nonblank continuation character in column 6 and
that follows a comment line or a continued comment.

Noncomment lines The number of lines that are not comment lines, continued
comment lines, or blank lines.

Blank lines The number of lines that contain only blanks.

Prolog lines The number of comment lines that are found before the first
noncomment line.

Total statements Comment statements plus noncomment statements.

Comment statements The number of comment lines minus the number of lines
that are continued comments.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements The number of noncomment lines minus the number of lines
that are continued noncomments. A continued noncomment
is a line that has a nonblank continuation character in
column 6 and that follows a noncomment line or a
continued noncomment.

Parameters
The following keyword parameters are expected as input for FLMLPFRT:

206 z/OS V1R2.0 ISPF SCLM Reference

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ.

PARSEDSN
Data set name containing the member to be parsed. The SCLM variable
@@FLMDSN is the recommended value. This parameter is required.

PARSEMEM
The name of the member to be parsed. The SCLM variable @@FLMMBR is the
recommended value. This parameter is required.

SOURCEDD
The ddname of the source to be read. This parameter is optional. If a
SOURCEDD is specified, it will override the PARSEDSN and PARSEMEM
parameters.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes
FLMLPFRT uses ISPF services. When a failure is the result of an ISPF service error,
the message returned by the ISPF service is logged in the user’s ISPF log (if there
is one).

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

1

Explanation: Data set name not found in parameter
list.

User response: Contact the project manager.

Project manager response: Check the language
definition syntax (PARSEDSN parameter on the
OPTIONS parameter on the FLMTRNSL FORTRAN
parser). Verify that PORDER=1 or PORDER=3 was
used on the FLMTRNSL macro of the language
definition. A PORDER of 0 or 2 in the FLMTRNSL
macro for the FLMLPFRT parser will result in
FLMLPFRT receiving control without the OPTION list.
PORDER 0 and 2 are used for situations in which there
are no OPTION lists.

2

Explanation: The statistical information address
(@@FLMSTP) is not found in the parameter list.

User response: Contact the project manager.

Project manager response: Check the language

definition syntax (STATINFO parameter on the
OPTIONS parameter on the FLMTRNSL FORTRAN
parser).

3

Explanation: The list information address
(@@FLMLIS) is not found in the parameter list.

User response: Contact the project manager.

Project manager response: Check the language
definition syntax (LISTINFO parameter on the
OPTIONS parameter on the FLMTRNSL FORTRAN
parser).

4

Explanation: A dependency name was encountered
that had more than 8 characters. The name is ignored
and processing continues.

User response: Check the source member for
dependency names longer than 8 characters.
Dependency names are restricted to a length of 1 to 8
characters.

Project manager response: The language definition
can be changed for GOODRC=4 if it is acceptable to
ignore the dependency names that are longer than 8
characters.

Chapter 5. SCLM Translators 207

5

Explanation: The STATINFO, LISTINFO, and/or
LISTSIZE keyword parameters are invalid.

User response: Check the language definition for the
correct values for keyword parameters STATINFO,
LISTINFO, and LISTSIZE.

Project manager response: The invalid keyword
parameters for FLMLPFRT OPTIONS in the language
definition should be corrected and the project definition
assembled and linked.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: The member name specified by the parse
parameter is blank.

User response: None.

Project manager response: Check the language
definition syntax and member specification.

12

Explanation: The LISTSIZE keyword parameter in the
OPTIONS is too small. There is not enough room for
one element in the dependency array.

User response: Contact the project manager.

Project manager response: Update the project
definition, assemble, and link-edit. LISTSIZE must be
set to @@FLMSIZ in order to get a proper value for
BUFSIZE.

24

Explanation: Parser was not linked AMODE(24),
RMODE(24).

User response: Contact the project manager.

Project manager response: Reinstall the parser by
relinking it AMODE(24). See ISPF log for more details.

100

Explanation: The value for the PARSEDSN keyword is
invalid.

User response: Check the language definition and
verify that PARSEDSN keyword value is valid.

Project manager response: None.

101 - 199

Explanation: The data set specified by the PARSEDSN
keyword could not be allocated.

User response: Verify that the data set designated by
the keyword exists.

Project manager response: None.

201 - 299

Explanation: The data set specified by the PARSEDSN
keyword could not be opened, or is already opened.

User response: Verify that the data set exists, is not in
use, and has not been allocated with a disposition of
SHR or MOD.

Project manager response: None.

401 - 499

Explanation: An error occurred reading the data set
specified by the PARSEDSN keyword. The data set is
either empty, not opened for input, or has exceeded its
space capacity.

User response: Verify that the data set exists, it is not
empty, and the space allocation will support the
process.

Project manager response: None.

500

Explanation: An error occurred when closing the file
or when freeing storage.

User response: Contact the project manager.

Project manager response: Contact your IBM Service
Representative.

599

Explanation: An ABEND was detected during I/O or
allocation of the data set to be parsed.

User response: Check if the data set member to be
parsed exists. An improper value for STATINFO in the
OPTIONS of the FLMTRNSL for the parser can be
another cause.

Project manager response: Make sure the data set
member exists. Make corrections to the project

208 z/OS V1R2.0 ISPF SCLM Reference

definition; assemble and link the project definition.

Chapter 5. SCLM Translators 209

FLMLPGEN General Purpose Parser

Purpose
FLMLPGEN is a general purpose parser that can get dependency information and
statistics for the following languages:

370 Assembler
PL/I
REXX
CLIST
TEXT

General information:
v Comments and the contents of quoted strings are ignored.
v DBCS strings (delimited by shift-out and shift-in characters) in comments and

quotes are allowed.
v Total lines and blank lines are always counted.
v Control statements and assignment statements are always set to zero.

Using FLMLPGEN as an Assembler Parser
The Assembler parser uses the following rules:
v Set LANG=A for Assembler in the option list of the OPTIONS parameter, in the

FLMTRNSL macro, and in the language definition macro (FLMLANGL).
v COPY statements with a continuation character in column 72 will be ignored.
v Any opcode not recognized as a standard 370 opcode is considered to be an

external dependency (see next item).
v Macros that are defined inline are not flagged as external dependencies.
v Vector, ESA, and z/Series opcodes are recognized.
v OPSYN, ISEQ, ICTL, and others that alter the language or defaults are ignored.
v EXEC SQL INCLUDE statements are recognized and dependencies are generated

(SQLCA and SQLDA are not flagged as external dependencies). SQL includes
can span lines. All other EXEC statements are not flagged as a dependency.

Using FLMLPGEN as a PL/I Parser
The PL/I parser uses the following rules:
v In the language definition, set LANG=I or LANG=1 for PL/I.
v Statements are just the number of semicolons not in comments or quotes plus

commas not in parentheses. The following example has six statements (note the
first DCL statement counts as three statements, but the second only counts as
one because the commas are in parentheses).

EXAMPLE:PROC;
DCL ONE FIXED(31),

TWO FIXED(31),
THREE FIXED(31);

DCL (A_ONE, AN_A_TWO, AN_A_THREE) FIXED(31);

END EXAMPLE;

v Include statements cannot span lines.
v Include statements can include a ddname (as per PL/I syntax).
v Only the first %INCLUDE on a line will be recognized. Multiple dependencies

are allowed on one line:
%INCLUDE A, B, DD1(C), DD2(D) ...

210 z/OS V1R2.0 ISPF SCLM Reference

|

v Preprocessor labels on include statements cause those includes to be missed.
v EXEC SQL INCLUDE statements are recognized and dependencies are generated

(SQLCA and SQLDA are not flagged as external dependencies). SQL includes
can span lines.

v Multiple EXEC SQL INCLUDE statements can appear on one line and the
dependencies will be generated.

v Dependencies are recognized from all ddnames.

Using FLMLPGEN as a CLIST, REXX or Generic Parser
FLMLPGEN uses the following rules for the CLIST, REXX, and generic parsers.
v In the language definition, set LANG=C for CLIST, LANG=R for REXX, or LANG=T for

Generic Parser.
v Source can be any format (fixed or variable) up to record length 255.
v Sequence numbers are ignored.
v Continuation of statements is recognized by the following:

+ and − for CLIST
, for REXX

v Open comments (/* only) for CLIST are allowed. They are considered closed at
the end of the line if there is no continuation character.

v The REXX language can be used to gather statistics for other languages that use
/* and */ as delimiters such as ISPF panels. (Statistics might not be correct if
any commas are at the end of any lines.)

Using FLMLPGEN as a TEXT Parser
FLMLPGEN uses the following rules for parsing TEXT members.
v In the language definition, set LANG=T for TEXT.
v Source can be any format (fixed or variable) and any valid record length.
v Sequence numbering is counted as nonblank lines.
v Only total lines and blank lines are counted.
v Control statements and assignment statements are always set to zero.

Parameters
The following keyword parameters are expected as input for FLMLPGEN:

LANG=A|T|R|C|I|1|
Use the LANG= parameter to specify the language to use to parse the
members. If you do not include the LANG= parameter, the members are
parsed as 370 Assembler. Valid language values are:
LANG=A Assembler only
LANG=T TEXT... count lines only
LANG=R REXX or similar languages that use /* and */ as comment

delimiters
LANG=C CLIST
LANG=I PL/I
LANG=1 PL/I

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ.

Chapter 5. SCLM Translators 211

SOURCEDD
The ddname of the source to be read. This parameter is required.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes
FLMLPGEN uses ISPF services. When a failure is the result of an ISPF service
error, the message returned by the ISPF service is logged in the user’s ISPF log (if
there is one).

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

1

Explanation: Data set name not found in parameter
list.

User response: Contact the project manager.

Project manager response: Check the language
definition PORDER value and syntax.

2

Explanation: The statistical information address
(@@FLMSTP) was not found in the parameter list.

User response: Contact the project manager.

Project manager response: Check the language
definition syntax (STATINFO parameter on the
OPTIONS parameter on the FLMTRNSL FLMLPGEN
parser).

3

Explanation: The list information address
(@@FLMLIS) was not found in the parameter list.

User response: Contact the project manager.

Project manager response: Check the language
definition syntax (LISTINFO parameter on the
OPTIONS parameter on the FLMTRNSL FLMLPGEN
parser).

4

Explanation: Dependency name longer than 8
characters was recognized. The dependency is not
added to the dependency list. Processing continues.

User response: Verify and correct the length of the
dependency name.

Project manager response: None.

5

Explanation: Maximum list size (LISTSIZE) was not
found in parameter list.

User response: None.

Project manager response: Check the language
definition syntax (LISTSIZE parameter on the
OPTIONS parameter on the FLMTRNSL FLMLPGEN
parser).

7

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, that is specified
by the BUFSIZE parameter on the FLMLANGL macro.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: Member name not found.

User response: None.

Project manager response: Check the language
definition syntax.

22

Explanation: I/O error.

User response: Check the source code for a
dependency name greater than 8 characters. The I/O
error may occur when the TSO prefix is not set and the
parser attempts to allocate an error data set. If the TSO
prefix was not set then set the TSO prefix and run the
parse again if you cannot locate the dependency name
that is greater than 8 characters.

Project manager response: Verify the data sets used
by the parser OPEN and CLOSE properly.

212 z/OS V1R2.0 ISPF SCLM Reference

24

Explanation: Parser was not linked AMODE(24),
RMODE(24).

User response: None.

Project manager response: Reinstall the parser by
relinking it AMODE(24). See ISPF log for more details.

101 - 199

Explanation: The data set specified by the PARSEDSN
keyword could not be allocated.

User response: Contact the project manager.

Project manager response: Verify that the data set
designated by the keyword exists.

201 - 299

Explanation: The data set specified by the PARSEDSN
keyword could not be opened, or is already opened.

User response: Verify that the data set exists, is not in
use, and has not been allocated with a disposition of
SHR or MOD.

Project manager response: None.

401 - 499

Explanation: An error occurred reading the data set
specified by the PARSEDSN keyword. The data set is
either empty, not opened for input, or has exceeded its
space capacity.

User response: Verify that the data set exists, it is not
empty, and the space allocation will support the
process.

Project manager response: None.

500

Explanation: An error occurred when closing the file
or when freeing storage.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

599

Explanation: An ABEND was detected during I/O or
allocation of the data set to be parsed.

User response: Check to see if the data set member to
be parsed exists. An improper value for STATINFO in
the OPTIONS of the FLMTRNSL for the parser can be
another cause.

Project manager response: Make sure the data set
member exists. Make any necessary corrections to the

project definition; assemble and link the project
definition.

Chapter 5. SCLM Translators 213

FLMLRASM REXX Assembler Parser

Purpose
This is the assembler parser translator, written in REXX, that parses the source
identified by the SOURCE DDNAME.

Functions
One of the functions of an SCLM parser is to determine all of a module’s
dependencies. FLMLRASM determines all of the names that are to be copied into
the Assembler source.

The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to columns 2 -71. Column 72 is checked for a

nonnull element (treated as a continuation). The use of nonnull elements to
continue strings for forming reserved words or dependency names is not
supported.

v An opcode or dependency token that extends into the continuation column will
not be added as a dependency; the parser return code will be set to 4, the line in
error will be written to the error listing data set (userid.SCLMERR.LISTING), and
processing will continue.

v When an uncommented, noncontinuation line has COPY after column 1, the next
token is taken as the name of a dependency.

Note: If the member name is enclosed in single or double quotes, the quotes are
ignored.

v When searching for the next token on a line and there are no more tokens on
that line, the search continues with the next continued line, if there is one.
Comment statements must not appear between an instruction statement and its
continuation lines.

v Tokens inside quoted strings will be ignored (except that quotation marks
around a member following a COPY or EXEC SQL INCLUDE statement are
removed).

v Labels starting in column 1 to the end of the token are considered white space.

FLMLRASM will generate a dependency for the MEMBER# token under the
following conditions:
v MEMBER# is the first token of a statement and is not one of the Op-codes for

the z/Series processors (including assembler extended mnemonics, Vector facility
and some obsolete 360/370 instructions).

v MEMBER# is the first token after a COPY or EXEC SQL INCLUDE instruction. It
can be on a continued line.

The following example illustrates conditions under which dependencies will and
will not be formed. Each MEMBER# token appears in an example of syntax that
the parser recognizes as creating a dependency. A MEMBER# token can be from 1
to 8 characters. The BADCPY# statements in the example will not create
dependencies for the following reasons:
v BADCPY1 follows an EXEC CICS instruction; dependencies are only generated

for precompiler instructions (EXEC SQL INCLUDE).
v BADCPY2 first appears in a macro definition, so no dependency is created on

subsequent appearances.
v BADCPY3 begins with an ampersand.
v BADCPY4 is not the first token of the statement in which it appears.

214 z/OS V1R2.0 ISPF SCLM Reference

|
|
|

*<-Column 1 Column 72->
MEMBER1 rest of line
LABEL MEMBER2 rest of line
COPY MEMBER3 rest of line
COPY X

MEMBER4
* A COMMENT LINE **
* DB2 PREPROCESSOR STATEMENTS - each is 1 statement, 1 dependency
EXEC SQL INCLUDE MEMBER5
EXEC SQL INCLUDE X

MEMBER6
* CICS PREPROCESSOR STATEMENT - 1 statement, no dependency
EXEC CICS BADCPY1
* Statements for which no dependency is generated
MACRO X

BADCPY2
&BADCPY3 rest of line
* previously defined macros ignored
BADCPY2 X

BADCPY4
* continued lines ignored, except after COPY & EXEC SQL INCLUDE

Another function of the parser is to gather statistics or metrics for each module to
be parsed. There are ten such statistics saved by SCLM, but only 8 are generated
by this parser. For assembler, this parser defines the ten statistics as follows:

Total lines The total number of records in the file.

Comment lines The number of lines with an asterisk in the first column.

Noncomment lines The number of total lines minus the number of comment
lines.

Blank lines The number of lines that contain only blanks.

Prolog lines The number of comment lines and blank lines that are found
before the first noncomment line.

Total statements The number of comment statements plus the number of
noncomment statements.

Comment statements This value is equal to the number of comment lines.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements The number of statements whose first token is a reserved
words, plus the number of EXEC SQL and EXEC CICS
instructions.

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual usage of the

parameters for FLMLRASM.

The following keyword parameters, separated by commas, are required as input to
FLMLRASM:

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

Chapter 5. SCLM Translators 215

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:

v The dependency is greater than 8 characters. The
error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded 8 characters.

v The dependency name flows into column 72.

The error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
extends into column 72. dependency will be positioned
under its occurrence in line to show that it is too far
over in the source file.

v The dependency name after a COPY is prefixed by
an ampersand (&).

The error message in userid.SCLMERR.LISTING is:

4
line
&

where line is the source line that contains the
dependency that begins with an ampersand, and & is
printed under its occurrence in line.

v Mismatched quotes - a single or double quote was
found that did not have a matching closing quote.

The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where mark is either a single or double quotation
mark, and line_no is the line number that contains
the unmatched quotation mark.

The dependency is not added to the list. Processing
continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro.

The error message in userid.SCLMERR.LISTING is:

8
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded the space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL

216 z/OS V1R2.0 ISPF SCLM Reference

parameters for the FLMLRASM parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative. Verify that the SOURCE DDNAME is
allocated correctly. Verify that the data set and member
to parse exist. Verify that the FLMALLOC macro is
complete and valid for the parser.

40

Explanation: SCLM was not successful in invoking
FLMLRASM using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRASM does not
return a 40. A 40 can be encountered from SCLM for
CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

Chapter 5. SCLM Translators 217

FLMLRCBL REXX COBOL Parser

Purpose
This is the COBOL parser translator, written in REXX, that parses the source
identified by the SOURCE DDNAME.

Functions
One of the functions of an SCLM parser is to determine a module’s dependencies.
FLMLRCBL determines the names of dependencies that are to be copied into the
COBOL source.

The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to columns 8 -72. Column 7 is ignored except

when it contains ’*’ or ’/’ (treated as a comment line) or ’-’ (treated as a
concatenation). The use of ’-’ to concatenate strings for forming reserved words
or dependency names is not supported.

v When an uncommented, noncontinuation line has COPY after column 7, the next
token is taken as the name of a dependency. Note the following exceptions.
If the member name is enclosed in single or double quotes, the quotes are
ignored and the member name is taken as the name of a dependency.

v When the 3 tokens EXEC, SQL, and INCLUDE are found in order on 1 or more
uncommented lines after column 7, with no intervening text, the next token is
taken as the name of a dependency. Note the following exceptions.
If the member name is enclosed in single or double quotes, the quotes are
ignored and the member name is taken as the name of a dependency.

v When searching for the next token on a line and there are no more tokens on
that line, the search continues with the next uncommented line.

v Tokens inside quoted strings will be ignored, except for quoted member names
following COPY statements. Reserved words inside quoted strings and
comments will not be counted as statements.

v FLMLRCBL recognizes COPY or EXEC SQL INCLUDE anywhere in the source
file (as long as they are not in quotation marks or comments).

Multiple COPY or EXEC SQL INCLUDE statements on any line or continued line
are recognized.

The following example illustrates conditions under which dependencies will and
will not be formed. Each MEMBER# token appears in an example of syntax that
the parser recognizes as creating a dependency. A MEMBER# token must be from 1
to 8 characters. The BADCPY1 and BADCOPY02 statements in the example will
not create dependencies for the following reasons:
v BADCPY1 and the COPY preceding it are inside a quoted string and are

therefore ignored.
v BADCOPY02 is longer than 8 characters.
123456*<-Column 7 Column 72->
001010 FD TEST-FILE COPY MEMBER1.
001200 01 I-O-CNTL . COPY 'MEMBER2'
001201 01 I-O-CNTL COPY "MEMBER3" .
001201 01 LABEL PIC X VALUE 'EXTRA COPY
001201- BADCPY1 '.
001202 EXEC SQL INCLUDE MEMBER4
001202 EXEC SQL INCLUDE 'MEMBER5'
001202 EXEC SQL INCLUDE "MEMBER6"
001300 COPY

218 z/OS V1R2.0 ISPF SCLM Reference

001300* copy across a comment line
001300 MEMBER7.
001400 01 TESTNAMX COPY MEMBER8 . COPY MEMBER9.
001401 77 TESTNAME . COPY BADCOPY02.

Another function of the parser is to gather statistics or metrics for each module to
be parsed. SCLM saves 10 statistics; only 7 are generated by this parser. For
COBOL, this parser defines the following 10 statistics:

Total lines The total number of records in the file.

Comment lines The number of lines with a slash (/) or an asterisk (*) in
column 7.

Noncomment lines The number of total lines minus the number of comment
lines.

Blank lines The number of lines that contain only blanks after column 6.
Any sequence numbers in the rightmost columns of the line
are ignored.

Prolog lines The number of comment lines and blank lines that are found
before the first noncomment line.

Total statements The number of the following reserved words that appear on
an uncommented line after column 7:

ACCEPT EVALUATE PERFORM
ADD EXAMINE READ
ALTER EXIT RELEASE
CALL GO RETURN
CANCEL GOBACK REWRITE
CLOSE GOTO SEARCH
COMPUTE IF SET
CONTINUE INITIALIZE SORT
COPY INSPECT START
DELETE MERGE STOP
DISPLAY MOVE STRING
DIVIDE MULTIPLY SUBTRACT
ENTER NOTE TRANSFORM
ENTRY ON UNSTRING

OPEN WRITE

In addition, any EXEC SQL and EXEC CICS statements are
treated as program statements.

Comment statements This value is always 0.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This is the same as total statements.

Parameters
Use the following guidelines to specify parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual usage of the

parameters for FLMLRCBL.

The following keyword parameters, separated by commas, are required as input
for FLMLRCBL:

Chapter 5. SCLM Translators 219

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:
v Dependency name greater than 8 characters The

error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded 8 characters. The dependency is not added
to the dependency list.

v Mismatched quotes. A single or double quote did not
have a matching closing quote.

The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where mark is either a single or double quotation
mark that has no matching closing quote, and line_no
is the line number of the line that contains the
unmatched quotation mark.

The dependency is not added to the list. Processing
continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro.

The error message in userid.SCLMERR.LISTING is:

8
dependency

where dependency is the dependency that exceeded the
space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters for the FLMLRCBL parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

220 z/OS V1R2.0 ISPF SCLM Reference

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Verify that the SOURCE
DDNAME is allocated correctly. Verify that the data set
and member to parse exist. Verify that the FLMALLOC
macro is complete and valid for the parser. Contact
your IBM service representative.

40

Explanation: SCLM was not successful in invoking
FLMLRCBL using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRCBL does not
return a 40. A 40 can be encountered from SCLM for
CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

Chapter 5. SCLM Translators 221

FLMLRCIS MVS C/C++ parser with include set support

Purpose
The FLMLRCIS parser supports MVS C and C++ source files. The parser is written
in REXX. The includes found by the parser are associated with an include set (See
FLMINCLS macro.) that is the set name from the include statement.

Functions
The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to uncommented text.

The character strings /* and */ are recognized as comment delimiters that can
span lines. The character string // is recognized as a begin comment token
where the comment ends at the end of the line.

v Include dependencies are generated when the first token on the line is #include.
The dependency consists of the member or include name and the include set
name in the format ’member.set’, where set is the include set name. It can be
surrounded by double quotes (″member.set″) or by angle brackets
(<member.set>).

v Tokens inside of strings are ignored.

The following table illustrates how include and include-set names are derived from
source statements.

Source statement Include name Include-set name

#include ″abc″ abc

#include ″abc.h″ abc h

Another function of the parser is to gather statistics or metrics for each module to
be parsed. SCLM saves 10 statistics, but only 4 are generated by this parser. This
parser defines the ten statistics as follows:

Total lines The total number of records in the file.

Comment lines This value is always 0.

Noncomment lines This is the same as the total lines.

Blank lines The number of lines that contain only blanks.

Prolog lines This value is always 0.

Total statements This value is always 0.

Comment statements The total number of /* */ pairs in the member.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This value is always 0.

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definition provided by SCLM for the actual use of the

parameters for FLMLRCIS.

222 z/OS V1R2.0 ISPF SCLM Reference

The following keyword parameters, separated by commas, are required as input to
FLMLRCIS:

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:

v The include name is greater than 8 characters. The
error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded eight characters. The truncated form of the
dependency is added to the dependency list.

v Unsupported form of include dependency. The error
message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the text of the desired
include member.

v #include statement spans multiple lines. The error
message in userid.SCLMERR.LISTING is:

4
line
mark

where line is the source line that contains the mark,
and mark is the mark (either a quotation mark or an
angle bracket) that has no matching pair on the line.

v Mismatched quotes. A single or double quote was
found that did not have a matching closing quote.
The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where line_no is the line number that contains the
unmatched quotation mark, and mark is the either a
single or double quotation mark.

Processing continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro. The error message in
userid.SCLMERR.LISTING is:

8
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded the space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

Chapter 5. SCLM Translators 223

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters for the FLMLRC2 parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative. Verify that the SOURCE DDNAME is
allocated correctly. Verify that the data set and member
to parse exist. Verify that the FLMALLOC macro is
complete and valid for the parser.

40

Explanation: SCLM was not successful in invoking
FLMLRCIS using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRC2 does not return
a 40. A 40 can be encountered from SCLM for

CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

224 z/OS V1R2.0 ISPF SCLM Reference

FLMLRC2 C, C++, and Resource file parser for workstation source

Purpose
The FLMLRC2 parser supports C, C++ and resource files. The parser is written in
REXX. The includes found by the parser are associated with an include set (See
FLMINCLS macro.) that is the extension from the include statement.

Functions
The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to uncommented text.

The character strings /* and */ are recognized as comment delimiters that can
span lines. The character string // is recognized as a begin comment token
where the comment ends at the end of the line.

v Include dependencies are generated in the following conditions:
– The first token on the line is #include. The included file name can be

surrounded by double quotes (″file.ext″) or by angle brackets (<file.ext>).
– Dependencies are generated for some resource compiler statements. The

statements support options between the statement and the include name, so
the include name is taken as the last token on the line. Some of these
statements have a format for includes and a format that does not support
includes. The parser only finds includes when the statement does not contain
a comma. The following statements are recognized as include statements:

BITMAP
FONT
ICON
POINTER
RESOURCE
RCINCLUDE
DLGINCLUDE

v Tokens inside of strings are ignored.

Include names are generated after removing excess characters (all characters up to
and including the rightmost directory separator character, if any, and all characters
from the first ’.’ to the end of the file name). The default is \. Any underscore
characters (_) or blanks are replaced by at-signs (’@’). Include names longer than
eight characters are truncated to eight characters and a return code of 4 is issued.
The include-set names are generated from the characters following the first ’.’ to
the end of the file name. Include-set names are also truncated to eight characters
and underscore characters and blanks are replaced by at-signs. The following table
illustrates how include and include-set names are derived from source statements.

Source statement Include name Include-set name

#include ″abc″ abc

#include ″abc.h″ abc h

ICON 97, 101, 10, 10, 0, 0

ICON ID_WINDOW mahjongg.ico mahjongg ico

#include ″my file.h″ my@file h

Another function of the parser is to gather statistics or metrics for each module to
be parsed. SCLM saves 10 statistics, but only 4 are generated by this parser. This
parser defines the ten statistics as follows:

Chapter 5. SCLM Translators 225

Total lines The total number of records in the file.

Comment lines This value is always 0.

Noncomment lines This is the same as the total lines.

Blank lines The number of lines that contain only blanks.

Prolog lines This value is always 0.

Total statements This value is always 0.

Comment statements The total number of /* */ pairs in the member.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This value is always 0.

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual use of the

parameters for FLMLRC2.
v The directory separator character defaults to \.

The DIR_SEPARATOR keyword parameter may be used to specify a directory
separator character.

The following keyword parameters, separated by commas, are required as input to
FLMLRC2:

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:

v Dependency name greater than 8 characters. The
error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded eight characters. The truncated form of the
dependency is added to the dependency list.

v Unsupported form of include dependency. The error
message in userid.SCLMERR.LISTING is:

4
line
dependency

226 z/OS V1R2.0 ISPF SCLM Reference

where line is the source line that contains the
dependency, and dependency is the text of the desired
include member.

v #include statement spans multiple lines. The error
message in userid.SCLMERR.LISTING is:

4
line
mark

where line is the source line that contains the mark,
and mark is the mark (either a quotation mark or an
angle bracket) that has no matching pair on the line.

v Mismatched quotes. A single or double quote was
found that did not have a matching closing quote.
The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where line_no is the line number that contains the
unmatched quotation mark, and mark is the either a
single or double quotation mark.

Processing continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro. The error message in
userid.SCLMERR.LISTING is:

8
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded the space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters for the FLMLRC2 parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative. Verify that the SOURCE DDNAME is
allocated correctly. Verify that the data set and member
to parse exist. Verify that the FLMALLOC macro is
complete and valid for the parser.

40

Explanation: SCLM was not successful in invoking
FLMLRC2 using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRC2 does not return
a 40. A 40 can be encountered from SCLM for
CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

Chapter 5. SCLM Translators 227

FLMLRC37 REXX C370 Parser

Purpose
This is the C/370 parser translator, written in REXX, that parses the source
identified by the SOURCE DDNAME.

Functions
One of the functions of an SCLM parser is to determine all of a module’s
dependencies. FLMLRC37 determines all of the names that will be copied into the
C/370 source.

The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to uncommented text.
v When an uncommented line has #INCLUDE as the first token, followed by a

token enclosed in double quotes (“MEMBER”) or angle brackets (<MEMBER>),
the enclosed token is accepted as the name of a dependency. Note the following
exceptions.
– When an uncommented line has EXEC, SQL, and INCLUDE as its first three

tokens, the next token is accepted as the name of a dependency.
– Tokens inside of strings or comments are ignored. /* */ pairs are

recognized as comment delimiters by the FLMLRC37 parser. Lines starting
with // are also recognized as comments.

Dependencies are generated after removing excess characters (all characters up to
and including the rightmost /, if any, and all characters from the first period (.) to
the end of the file name). Any underscore characters (_) are replaced by at sign
characters (@). Dependency names longer than 8 characters are truncated to 8
characters and a return code of 4 is issued. The following table illustrates how
dependencies are derived from include directives.

#include Directive Dependency Generated Return Code

#include ″abc″ ABC 0

#include <sys/abc/xx> XX 0

#include ″Sys/abc/xx.h″ XX 0

#include <sys/name_1> NAME@1 0

#include ″Name2/App1.App2″ APP1 0

#include ″xx.h.a″ XX 0

#include <DD:PLAN(YEAR)> NONE 4

#include <’USER.SRC.MYINCS’> NONE 4

#include ″abc456789″ ABC45678 4

The following example further illustrates conditions under which dependencies
will and will not be formed. Each MEMBER# token appears in an example of
syntax that the parser recognizes as creating a dependency. The BADCPY#
statements will not create dependencies for the following reasons:
v BADCPY1 is inside comment delimiters.
v BADCPY2 is not inside quotes or angle brackets.
v BADCPY3 is inside a string.

228 z/OS V1R2.0 ISPF SCLM Reference

/* #include "badcpy1" */
#include "member1"
#include <member2>
#include badcpy2
EXEC SQL INCLUDE member3
printf '#include badcpy3'

Another function of the parser is to gather statistics or metrics for each module to
be parsed. SCLM saves 10 statistics, but only 4 are generated by this parser. For
C/370, this parser defines the ten statistics as follows:

Total lines The total number of records in the file.

Comment lines This value is always 0.

Noncomment lines This is the same as the total lines.

Blank lines The number of lines that contain only blanks.

Prolog lines This value is always 0.

Total statements This value is always 0.

Comment statements The total number of /* */ pairs in the member.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This value is always 0.

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual use of the

parameters for FLMLRC37.

The following keyword parameters, separated by commas, are required as input to
FLMLRC37:

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:

v Dependency name greater than 8 characters. The
error message in userid.SCLMERR.LISTING is:

Chapter 5. SCLM Translators 229

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded eight characters. The truncated form of the
dependency is added to the dependency list.

v Unsupported form of include dependency. The error
message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the text of the desired
include member.

v #include statement spans multiple lines. The error
message in userid.SCLMERR.LISTING is:

4
line
mark

where line is the source line that contains the mark,
and mark is the mark (either a quotation mark or an
angle bracket) that has no matching pair on the line.

v Mismatched quotes. A single or double quote was
found that did not have a matching closing quote.
The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where line_no is the line number that contains the
unmatched quotation mark, and mark is the either a
single or double quotation mark.

Processing continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro. The error message in
userid.SCLMERR.LISTING is:

8
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded the space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size

(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters for the FLMLRC37 parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative. Verify that the SOURCE DDNAME is
allocated correctly. Verify that the data set and member
to parse exist. Verify that the FLMALLOC macro is

230 z/OS V1R2.0 ISPF SCLM Reference

complete and valid for the parser.

40

Explanation: SCLM was not successful in invoking
FLMLRC37 using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRC37 does not return
a 40. A 40 can be encountered from SCLM for
CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

Chapter 5. SCLM Translators 231

FLMLRDTL REXX DTL Parser

Purpose
This is the DTL Parser translator, written in REXX. Comments and split lines are
not supported. The only recognized references are:
v <:entity inclname system> or
v <!entity inclname system> or
v <:entity % inclname system> or
v <!entity % inclname system>
v <?inclname>
v <?inclname otherstuff>

Parameters
The following parameters are expected as input for the translator:
v Address of the storage to hold the list of included members
v Size of the storage to hold the list of included members.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

20

Explanation: Too many includes to fit in the storage
provided.

User response: Increase the storage.

Project manager response: None.

232 z/OS V1R2.0 ISPF SCLM Reference

FLMLRIPF Script and OS/2 IPF Source Parser

Purpose
The FLMLRIPF parser supports script and OS/2 ipf source files. The parser is
written in REXX. The includes found by the parser are associated with an include
set (See FLMINCLS macro.) that is the extension from the include statement.

Functions
The parser uses the following syntax rules to locate dependency names:
v The search for tokens is restricted to uncommented text.

Lines beginning with .* are recognized as comments.
v Include dependencies are generated in the following conditions:

– The first token on the line is .im. The second token on the line is the include
name. The include set will be the extension from the file name.

– The first token on the line is :artwork. The token following name= is the
include name.

v Tokens inside of strings are ignored.

Include names are generated after removing excess characters (all characters up to
and including the far-right directory separator character (default is \), if any, and
all characters from the first period (.) to the end of the file name). Any underscore
characters (_) or blanks are replaced by at-signs (’@’). Include names longer than
eight characters are truncated to eight characters and a return code of 4 is issued.
The include-set names are generated from the characters following the first period
(.) to the end of the file name. Include-set names are also truncated to eight
characters and underscore characters and blanks are replaced by at-signs. The
following table illustrates how include and include-set names are derived from
source statements.

Source statement Include name Include-set name

.im abc abc

:artwork name=’tile_c_1.bmp’ runin. tile@c@1 bmp

Another function of the parser is to gather statistics or metrics for each module to
be parsed. SCLM saves 10 statistics, but only 4 are generated by this parser. This
parser defines the ten statistics as follows:

Total lines The total number of records in the file.

Comment lines This value is always 0.

Noncomment lines This is the same as the total lines.

Blank lines The number of lines that contain only blanks.

Prolog lines This value is always 0.

Total statements This value is always 0.

Comment statements The total number of /* */ pairs in the member.

Control statements This value is always 0.

Assignment statements This value is always 0.

Noncomment statements This value is always 0.

Chapter 5. SCLM Translators 233

Parameters
The following guidelines apply when specifying parameters:
v The order of the parameters is not important.
v See the language definitions provided by SCLM for the actual use of the

parameters for FLMLRIPF.
v The directory separator character defaults to \.

The DIR_SEPARATOR keyword parameter may be used to specify a directory
separator character.

The following keyword parameters, separated by commas, are required as input to
FLMLRIPF:

LISTINFO
Pointer to the SCLM list information record. This parameter is required and
must be set to @@FLMLIS.

LISTSIZE
The size of the LISTINFO buffer. This parameter is required and must be set to
@@FLMSIZ. The parser checks to make sure that the LISTSIZE parameter is
large enough to hold at least one entry of 228 bytes.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: The dependency name does not match
the source code for one of the following reasons:

v Dependency name greater than 8 characters. The
error message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded eight characters. The truncated form of the
dependency is added to the dependency list.

v Unsupported form of include dependency. The error
message in userid.SCLMERR.LISTING is:

4
line
dependency

where line is the source line that contains the
dependency, and dependency is the text of the desired
include member.

v #include statement spans multiple lines. The error
message in userid.SCLMERR.LISTING is:

4
line
mark

where line is the source line that contains the mark,
and mark is the mark (either a quotation mark or an
angle bracket) that has no matching pair on the line.

v Mismatched quotes. A single or double quote was
found that did not have a matching closing quote.
The error message in userid.SCLMERR.LISTING is:

4
mark line_no

where line_no is the line number that contains the
unmatched quotation mark, and mark is the either a
single or double quotation mark.

Processing continues.

User response: Change the syntax to fit the parser.

Project manager response: None.

8

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is
specified by the BUFSIZE parameter on the
FLMLANGL macro. The error message in
userid.SCLMERR.LISTING is:

234 z/OS V1R2.0 ISPF SCLM Reference

8
line
dependency

where line is the source line that contains the
dependency, and dependency is the dependency that
exceeded the space allocated for the list.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

10

Explanation: FLMTRNSL parameters are incorrect or
are not specified.

The error message in userid.SCLMERR.LISTING is:

10
bad_parms

where bad_parms are the parameters that are incorrect
or not specified.

User response: Contact the project manager.

Project manager response: Verify that the FLMTRNSL
parameters for the FLMLRIPF parser are valid and
complete.

12

Explanation: Issued by TSOLNK; the parser was not
found in the data set specified on the DSNAME
parameter of the FLMTRNSL macro.

User response: Contact the project manager.

Project manager response: Verify that the value of the
DSNAME parameter on the FLMTRNSL macro is
correct.

16

Explanation: Error opening the error listings file.

User response: Contact the project manager.

Project manager response: Ensure that user has the
authority to create and write to the file
userid.SCLMERR.LISTING.

20

Explanation: Error closing the source file.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative.

22

Explanation: An I/O error occurred in the DCB while
reading input. Processing stops.

User response: Contact the project manager.

Project manager response: Contact your IBM service
representative. Verify that the SOURCE DDNAME is
allocated correctly. Verify that the data set and member
to parse exist. Verify that the FLMALLOC macro is
complete and valid for the parser.

40

Explanation: SCLM was not successful in invoking
FLMLRIPF using IKJEFTSR (TSOLNK).

User response: Contact the project manager.

Project manager response: FLMLRIPF does not return
a 40. A 40 can be encountered from SCLM for
CALLMETH=TSOLNK. TSOLNK is used for executing
interpretive REXX. A 40 means IKJEFTSR (TSOLNK)
was not successful.

Chapter 5. SCLM Translators 235

FLMLSS General Purpose Parser

Purpose
This translator provides an interface to the general purpose SYNTRAN parser.
Parsing criteria are provided to this translator through tables.

General information:
v Comments and the contents of quoted strings are ignored.
v DBCS strings (delimited by shift-out and shift-in characters) in comments and

quotes are allowed.
v Total lines and blank lines are always counted.
v Control statements and assignment statements are always set to zero.
v The FLMLSS FLMPC370 parser is not case-sensitive.
v Dependencies are truncated to 8 characters before being added to the

dependency list.
v Dependencies are ONLY found if they are outside comments. Comment syntax

for each table is listed below. No other comment syntax is supported.

Note: This comment syntax does not match that allowed by some compilers.

Table Name Syntax

FLMPALST * indicates a comment that ends at the end of the line.

FLMPBOOK .* or .CM in column 1 or following a semicolon (;) indicates a comment that ends at
the end of the line.

FLMC370 /* or */ turns comments on or off. These delimiters are used interchangeably.

In the following example, bold text indicates areas considered to be comments by the
FLMLSS parser.

/* Comment 1 */
#include <i1>

/* Comment 2 /*
#include <i2>

/* Comment 3
/* Comment 4 */
#include <i3>
/*#include <i4>

In the example, include dependencies are found for i1, i2, and i4, but not for i3.

FLMDBRM No comments are processed.

236 z/OS V1R2.0 ISPF SCLM Reference

Table Name Syntax

FLMPJOV Two types of comments are supported. ″ turns the first type of comment on or off. %
turns the second type of comment on or off. This allows for nesting of comments.
Comments are allowed between the !COPY or !COMPOOL statement and the copy or
compool name.

In the following example, bold text indicates areas considered to be comments by the
FLMLSS parser.

!COMPOOL %COMMENT1%('I1');
!COMPOOL "COMMENT2"('I2');
!COMPOOL %COMMENT3('I3');
!COMPOOL "COMMENT4('I4');
!COMPOOL "COMMENT5%COMMENT6%"('I5');
!COMPOOL %COMMENT7"COMMENT8"%('I6');
!COMPOOL "COMMENT9%COMMENT10%('I7');
!COMPOOL %COMMENT11"COMMENT12"('I8');

In the example, include dependencies are found for I1, I2, I5, and I6, but not for I3, I4,
I7 or I8.

FLMPPAS Two types of comments are supported. (* or *) turns the first type of comment on or
off and is used interchangeably. /* or */ turns the second type of comment on or off
and is used interchangeably. The two comment delimiters let you nest comments.

In the following example, bold text indicates areas considered to be comments by the
FLMLSS parser.

%INCLUDE I1; (* COMMENT 1 *)
%INCLUDE I2; /* COMMENT 2 */
%INCLUDE I3; (* COMMENT 3 (*
%INCLUDE I4; */ COMMENT 4 */
%INCLUDE I5; (* COMMENT 5 /*NESTED COMMENT 5 */ *)
%INCLUDE I6; /* COMMENT 6 (*NESTED COMMENT 6 *) */
%INCLUDE I7; (* COMMENT 7
%INCLUDE I8; (*COMMENT 8
%INCLUDE I9;

/* COMMENT 9
/* COMMENT 10 */
%INCLUDE I10;

In the example, include dependencies are found for I1, I2, I3, I4, I5, I6, I7 and I9 but
not for I8 and I10.

FLMPSCRP .* or .CM in column 1 or following a semicolon (;) indicates a comment that ends at
the end of the line.

Parameters
The following keyword parameters are expected as input to FLMLSS:

CONTIN
The column in which the continuation line indicator is set in the input file. If
you specify 0 for this parameter, the parser will not concatenate continued
lines. The default is column 72.

EOLCOL
The maximum number of characters from each input line to be processed by
the parser. The parser ignores any information past this point. The default is 0.

LISTINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMLIS.

Chapter 5. SCLM Translators 237

LISTSIZE
The size of the listinfo buffer. This parameter is required and must be set to
@@FLMSIZ.

PTABLEDD
The ddname assigned to the parser data set load module. This parameter is
required.

SOURCEDD
The ddname assigned to the source file to be parsed. This parameter is
required.

STATINFO
Pointer to the SCLM statistics information record. This parameter is required
and must be set to @@FLMSTP.

TBLNAME
The name of the parser table load module. This parameter is required. The
following tables are provided with the SCLM product:
FLMPALST Architecture definition
FLMPBOOK BookMaster
FLMPC370 C/370
FLMPDBRM DBRM
FLMPEDL Series/1 EDL
FLMPJOV JOVIAL
FLMPPAS PASCAL
FLMPSCRP Script
FLMPS1A Series/1 assembler

Return Codes

0

Explanation: Indicates successful completion.

User response: None.

Project manager response: None.

4

Explanation: Indicates a warning condition. The limit
of 3000 characters for concatenated continuation lines
has been exceeded in the input file. The parser ignores
any information past the 3000-character limit, but will
continue parsing with the next line that is not a
continuation line.

User response: In order to remove this warning,
modify the input file so that concatenated continuation
lines will not exceed the 3000-character limit. If the
information past the 3000-character limit is not
important, there is no need to change the source file.

Project manager response: None.

8

Explanation: Indicates an error condition. The parser
completed successfully, but detected a syntax error in
the file being parsed.

User response: Check the input file for syntax errors.

Project manager response: None.

12

Explanation: Indicates an error condition. Unable to
load the SCLM table for the parser.

User response: Contact the project manager.

Project manager response: Verify that the user has
access to the table through proper library
concatenations.

16

Explanation: An invalid input parameter was
specified, or a required input parameter was not
specified.

User response: Contact the project manager.

Project manager response: Verify that the input
parameters are specified correctly in the FLMTRNSL
macro that defines this parser. Reassemble the project
definition. Verify that no errors occurred. Relink the
project definition.

20

Explanation: The number of parsed dependencies
exceeds the size of the $list_info array, which is

238 z/OS V1R2.0 ISPF SCLM Reference

specified by the BUFSIZE parameter on the
FLMLANGL macro.

User response: Either reduce the number of parsed
dependencies for the member or contact the project
manager.

Project manager response: Increase the buffer size
(BUFSIZE=) on the FLMLANGL macro for the
appropriate language definition. Be sure that LISTSIZE
on the FLMTRNSL macro is set to @@FLMSIZ.
Reassemble and relink the project definition.

24

Explanation: Indicates an error condition. The parser
was unable to load the SCLM table (FLMTABLE) or the
NLS table.

User response: Contact the project manager.

Project manager response: Verify that SCLM was
installed correctly.

Chapter 5. SCLM Translators 239

FLMLTWST Workstation Build Translator

Purpose
The FLMLTWST translator is used to perform compiles, links, or other services on
an ISPF connected workstation. It cannot be used when ISPF is accessed from a
web browser via the ISPF JAVA environment.

This translator is used for languages that have the source in SCLM and the
compiler, linker, or other tools on the workstation. FLMLTWST uses the ISPF
SELECT service to execute workstation commands and the FILEXFER ISPF service
to transfer files between the host and the workstation. This section describes the
FLMLTWST translator as supplied with the ISPF product.

The FLMLTWST translator is written in REXX to let the project manager customize
it to fit the needs of the project and workstation tools.

The translator does the following tasks:
v Initialization

Parses and validates the parameters.
v Reads action information

The action definitions are read from the ddname specified by the ACTINFODD
parameter. This information includes:
– The names of actions that can be specified with the ACTION parameter
– The workstation commands and parameters for each action
– Message file names
– The mapping between SCLM type names and workstation extensions and

subdirectories
– File transfer format (ASCII or BINARY).

v Gets user-specific information
Gets information such as which directory to store the files in on the workstation
and the response file name.

v Retrieves information from the build map
Gets the list of source members, includes, compiler options, and outputs from
the build map. The build map information is obtained by calling the
FLMTBMAP translator. The following build map keywords are processed. All
other keywords are ignored.

SINC, SINC*
Members on SINC statements:
– Will be transferred to the workstation.
– Can be added to the workstation command depending on the

workstation extension that the member’s type is mapped to, and the
parameter information specified for the workstation command in the
FLMLTWST logic.

Innn Include members identified by Innn statements in the build map will be
transferred to the workstation.

COMP, LIST, LMAP, LOAD, OBJ, OUTx
Output members identified by these statements in the build map:
– Will be transferred from the workstation to the ddname associated

with that output keyword.

240 z/OS V1R2.0 ISPF SCLM Reference

– Can be added to the workstation command depending on the
workstation extension that the member’s type is mapped to, and the
parameter information specified for the workstation command in the
FLMLTWST logic.

CMD The processing of the CMD statement depends on the blank delimited
keyword that follows the command statement. CMD statements that do
not have one of the keywords listed below will cause an error.

PARMS
The string following this keyword will be added to the
workstation command. If multiple CMD PARMS appear in the
archdef, they will be added to the workstation command in the
order they appear. Where the parameters appear in the
command in relation to the other parameters (input and output
files) is determined by the information in the setup part of the
FLMLTWST translator.

There will be no separator character following the value of
PARMS in the language definition. If a separator character is
desired then one should appear in the PARMS keyword as the
last character.

If CMD ACTION statements are present in the build map, the
parameters apply only to the workstation command for the
action that they follow. If they appear before any CMD ACTION
statements, they apply to the workstation command for the
action from the ACTION parameter on the FLMLTWST
translator definition.

ACTION
The string following this keyword must be a valid action (see
the ACTION parameter for this translator). You can use the
ACTION keyword to have FLMLTWST issue multiple
workstation commands. The first workstation command is the
command from the action specified on the ACTION parameter.

The following example shows how to add a binary resource file
to an .exe file by specifying ACTION=LINKEXE on the
FLMTRNSL in the language definition and using an architecture
member.
*
LKED EXE * use the EXE language
*
CMD PARMS /O+ /Ss
*
KREF OBJ * OBJBIN is generated by an OBJ keyword
*
INCLD SAMPLE C * includes SAMPLE OBJBIN
*
INCLD COMMON C * includes COMMON OBJBIN
*
LOAD SAMPLE EXEBIN
LMAP SAMPLE LMAP
*
CMD ACTION RCEXE * Add resources to the .exe
*
KREF OUT1 * RESBIN is generated by an OUT1 keyword
*
INCLD SAMPLE RC * includes SAMPLE RESBIN
*

Chapter 5. SCLM Translators 241

This causes two workstation commands to be issued. First the
sample.exe file is generated; then the resource compiler adds the
resources in the sample.res file to the sample.exe file. The
sample.exe file is not stored into SCLM until after the resource
compiler has run.

v Generates a response file if needed.
Workstation compilers and other tools that support response files will have one
generated. The response file contains the parameters for the compiler or other
tool.

v Transfers the inputs (source, includes, and so on) to the workstation.
The source members, includes, and response file are transferred to the
workstation using the FLMTXFER translator. If multiple workstation commands
are being issued, the response files for all commands after the first will be
transferred to the workstation just prior to issuing the command.

v Runs the workstation command.
Constructs the workstation command and sends it to the workstation.

v Transfers the outputs (obj, exe, dll, and so on) to the host.
Transfers the outputs to the host using the FLMTXFER translator. The SCLM
outputs are placed in ddnames allocated by FLMALLOC so that build can place
them into the hierarchy.

Parameters
The following parameters are specified in the OPTIONS list for the FLMTRNSL
macro that has COMPILE=FLMLTWST. All parameters are keyword parameters
and can be specified in any order. Parameters must be separated by commas.
Extraneous parameters are ignored without any messages being produced. An
FLMALLOC is required for the following data definitions:
v MESSAGEDD
v MSGXFERDD
v RESPONSEDD
v FILESDD
v BMAPDD
v USERINFODD
v ACTINFODD

ACTION=COMPILE│action_name
This parameter is optional. If not specified, it defaults to COMPILE. The valid
values are specified in the ACTINFO data set.

BMAPINFO=@@FLM$MP
This parameter is required and must be specified in the options list with the
value from @@FLM$MP.

BLDINFO=@@FLMBIO
This parameter is required and must be specified in the options list with the
value from @@FLMBIO.

SCLMINFO=@@FLMINF
This parameter is required and must be specified in the options list with the
value from @@FLMINF.

PARMS=command_parms
This parameter is optional. If specified, the string that follows it will be added
as the first parameter on all workstation commands.

242 z/OS V1R2.0 ISPF SCLM Reference

MESSAGEDD=dd_name
This parameter is optional. If not specified, it defaults to MESSAGE. This is the
ddname where messages are written.

MSGXFERDD=dd_name
This parameter is optional. If not specified, it defaults to MSGXFER. This is the
ddname to temporarily hold messages from the workstation command. The
messages are appended to the data set specified by the MESSAGEDD
parameter. The FLMALLOC for this ddname must specify CATLG=Y.

RESPONSEDD=dd_name
This parameter is optional. If not specified, it defaults to RESPONSE. This is
the ddname used to generate the response file for the workstation if the
workstation command requires a response file. The FLMALLOC for this
ddname must specify CATLG=Y.

FILESDD=dd_name
This parameter is optional. If not specified, it defaults to FILES. This ddname
is used to communicate between the FLMLTWST and FLMTXFER translators.
See the description of the content of this ddname in the FLMTXFER translator
description.

BMAPDD=dd_name
This parameter is optional. If not specified, it defaults to BMAP. This ddname
is used to communicate between the FLMLTWST and FLMTBMAP translators.
See the description of the content of this ddname in the FLMTBMAP translator
description.

USERINFODD=dd_name
This parameter is optional. If not specified, it defaults to USERINFO. This
ddname contains the information about the workstation where the tools will be
run. Each line in the data set allocated to the ddname can contain either a
comment or keyword and its value. Comment lines begin with an asterisk (*)
and are ignored. Lines that contain invalid keywords are ignored. Keywords
and their values must be separated by one or more spaces.

ACTINFODD=dd_name
This parameter is optional. If not specified, it defaults to ACTINFO. This
ddname contains the information about the workstation actions such as
COMPILE and LINKEXE. Each line in the data set allocated to the ddname
contains either a comment or a keyword. Comment lines begin with an asterisk
(*) and are ignored. Lines that contain invalid keywords are ignored. Keywords
on the statement must be separated by at least one space.

output_keyword=dd_name
These parameters can be used to specify the ddnames to hold the output for
each build output keyword. These parameters are not required. If not specified,
the ddname is the same as the keyword. An example of these parameters is
OBJ=SYSIN,LIST=SYSPRINT. This example defines FLMALLOC statements for
the SYSIN and SYSPRINT ddnames with IOTYPE=O or P. If these parameters
had not been specified, there would be FLMALLOC statements for OBJ and
LIST ddnames with IOTYPE=O or P.

The FLMALLOC statements for the output ddnames must specify CATLG=Y.
All allocations must be IOTYPE=O or P. If CATLG=Y is not specified, the file
transfer will fail.

USERINFODD statements
Valid keywords for statements in the USERINFODD dataset are:

Keyword Value Description

Chapter 5. SCLM Translators 243

Asterisk (*) Comment lines start with asterisks and are ignored.

RESPONSE_FILE The name of the response file on the workstation.
The file name must include the full path, because
the DATA_DIR value will not be prefixed to the
file name. The default is response.fil.

DEL_CMD The delete command to be used on the
workstation. The default is DEL. The message files
that are to be created by a workstation command
will first be deleted using this command. This is
done so that message files with the same name
from previous commands are not transferred to the
host after completion of a workstation command.

DATA_DIR The base directory where the files are stored on the
workstation. DATA_DIR must include the full
directory name. All SCLM members are transferred
to and from this directory and its subdirectories.
The subdirectories are based on the subdirectory
value specified in the ACTINFO file. This defaults
to ’\’. The FLMLTWST translator supplied by IBM
appends the subdirectory to the DATA_DIR value
before appending the file name.

MODE MODE specifies how the command is to start on
the workstation. MODE may be:
v MIN (minimized - the default)
v MAX (maximized)
v VIS (visible, if possible)
v INVIS (invisible, if possible).

A MODE value specified in USERINFODD will
override a MODE value specified in ACTINFODD.
For more information on MODE, see the ISPF
SELECT service in the ISPF Services Guide

WSDIR WSDIR specifies the workstation directory. This is
the directory from which the workstation
command will be executed. The default is the
directory from which ISPF Client/Server is
running. The WSDIR value from the ACTINFODD
dataset will be concatenated after the WSDIR value
from the USERINFODD dataset.

ACTINFODD statements
Statements in the ACTINFODD file are composed of a keyword and a value. The
keywords TYPE, EXTENSION, TRANSFER_FORMAT, and SUBDIRECTORY are
used to define the SCLM-type-to-workstation-file-extension mapping information
to SCLM. The other keywords in this file are used to specify information about
each workstation command. Keywords CPARM, EXTENSION, MESSAGE_FILE,
and RPARM apply only to the previous ACTION keyword. Valid keywords for
statements in the ACTINFO dataset are:

Keyword Value Description

Asterisk (*) Comment lines start with asterisks and are ignored.

WSDIR WSDIR specifies the workstation directory for
executing the command. The WSDIR value from

244 z/OS V1R2.0 ISPF SCLM Reference

the ACTINFODD dataset will be concatenated after
the WSDIR value from the USERINFODD dataset.

QUOTE The character to use for quoting strings in CPARM,
CPARMSEP, and RPARM statements. This character
is used for statements that follow this QUOTE
statement until the next QUOTE statement is
found. The default quote character is a single quote
(’).

ACTION The name of an action that can be specified on the
ACTION parameter to FLMLTWST.

COMMAND The command to be issued on the workstation for
the previous action. If multiple COMMAND
statements are found following an ACTION
statement only the last COMMAND is used.

MODE MODE specifies how the command is to start on
the workstation. MODE may be:
v MIN (minimized - the default)
v MAX (maximized)
v VIS (visible, if possible)
v INVIS (invisible, if possible).

A MODE value specified in USERINFODD will
override a MODE value specified in ACTINFODD.
For more information on MODE, see the ISPF
SELECT service in the ISPF Services Guide The
default MODE is MIN.

CPARM Parameters to add to the last workstation
COMMAND. The parameters are added to the
command in the order they are found in the file.
Each parameter is made up of three parts: a prefix,
a type name, and a suffix. The type name indicates
that the parameters on this CPARM statement only
apply to members in SCLM of that type. If no type
name is specified, the parameter is added to the
command. In the parameter string, the SCLM type
name is replaced with the name of SCLM members
of that type that are inputs or outputs to the build.
The parameters added to the command are
composed by concatenating the prefix, the
workstation file name for the SCLM member, and
the suffix. If multiple members match the type on
the CPARM statement, the prefix and suffix are
concatenated to each file name. See the examples at
the end of the description of FLMLTWST for more
information.
v A prefix string. The string must be surrounded

by quotes if it contains blanks.
v An SCLM type name. If the type name is

specified, the parameters are added if there is an
input or output of this type to the command. If
there are inputs and outputs of this type, the file
name containing each input and output is added

Chapter 5. SCLM Translators 245

to the workstation command preceded by the
prefix string and followed by the suffix string.
No blanks are placed between the file name and
the prefix and suffix strings. To get blanks
between the prefix and suffix strings and the file
name, use quotes around the strings and put the
blank inside the quotes.

v A suffix string. The string must be surrounded
by quotes if it contains blanks. This string
defaults to blank if not specified.

The following variables can be specified in the
prefix and suffix strings:

&CMD_PARMS&
Is replaced with the parameters specified
on ″CMD PARMS″ statements in the
architecture definition if there are any.
″Null″ will be used when ″CMD PARMS″
is not found. &CMD_PARMS& must be
present in order to use a CMD PARMS
statement in the architecture definition.

&RESPONSE_FILE&
Is replaced with the response file name.

&DATA_DIR&
Is replaced with the base directory from the
user information.

CPARMSEP The value to be used as a separator between the
command parameter strings specified by the
CPARM keywords. No separator character will be
added to the end of the parameter string. Also,
there will be no separator character following the
value of PARMS in the language definition. If you
want a separator character, then it should appear
in the PARMS keyword as the last character.
v CPARMSEP NULL results in no separator

character.
v CPARMSEP by itself results in a blank being

used as the separator character.
v CPARMSEP with a quoted string will have the

quotes removed from the front and back if the
quote characters match the value of the QUOTE
keyword. (If there is no QUOTE keyword the
single quote default will be used.) An error
message will appear if the first character is a
quote (as per the value of the QUOTE keyword)
and the last character is not a quote.

v No separator character will be added to the end
of the parameter string.

RPARM Parameters to add to the response file for the last
workstation command. The format of this
statement is the same as the CPARM statement.
Use CPARM if the parameters are specified as part

246 z/OS V1R2.0 ISPF SCLM Reference

of the workstation command. Use RPARM if the
parameters are to be put in a response file that the
workstation command will read. Only use response
file parameters if the workstation command
supports a response file. If parameters are specified
in a response file, make sure the response file name
is specified on one of the CPARM statements if the
workstation command requires it.

The variables described for CPARM can also be
used on RPARM statements.

TYPE The name of an SCLM type to transfer to the
workstation. The type name can include a single
asterisk (*) as a wild card character.

EXTENSION The workstation extension to use for the types
from the previous TYPE statement. A single
asterisk (*) can be included and is replaced with
any characters that matched the * in the TYPE
statement. The default value is *.

The value is either a single asterisk or a character
string. Strings using an asterisk and other
characters (such as H*) will result in the asterisk
being used as part of the extension.

SUBDIRECTORY The subdirectory to use for the file names derived
from the previous TYPE statement. The
subdirectory is placed between the data directory
as specified by the DATA_DIR keyword in the
USERINFODD user information and the file name
to construct the fully-qualified workstation file
name. The default value is a \.

TRANSFER_FORMAT The transfer format for files of the types from the
previous TYPE statement. Valid values are:

ASCII Translate the file to ASCII format. This is
the default.

BINARY
Perform no translation.

WSCASE The case for workstation file names. Valid values
are:
UPPER

Transfer the files to or from the
workstation with the workstation file name
in uppercase letters. This is the default
setting.

LOWER
Transfer the files to or from the
workstation with the workstation file name
in lowercase letters.

ULOWER
Transfer the files to or from the
workstation with the workstation file name
having an initial capital letter followed by
lowercase letters.

Chapter 5. SCLM Translators 247

MESSAGE_FILE The name of a message file that was created on the
workstation. It will be written to the ddname
specified by the MESSAGEDD parameter. This
statement can be used to get the messages from the
workstation command into the BUILD.LISTxx data
set. Multiple MESSAGE_FILE statements can be
specified. Each MESSAGE_FILE statement applies
to the previous ACTION. The default message file
name is c:\sclm.msg.

Environment
The FLMTXFER translator must have access to ISPF services. FLMLTWST must be
invoked by specifying CALLMETH=ISPLNK for the FLMTRNSL macro.

Return Codes
In addition to the return codes listed here, messages can be written to the ddname
specified by the MESSAGEDD parameter.

0

Explanation: The workstation build was successful.

Project manager response: None.

1-900, 904-908, >999

Explanation: Workstation command error.

User response: Review the messages from the
workstation command. Refer to the ISPF SELECT
service in the ISPF Services Guide for additional
information about problems with executing the
command.

Project manager response: None.

901

Explanation: The call to FLMTBMAP failed.

User response: Check the return code from
FLMTBMAP.

Project manager response: None.

902

Explanation: The call to FLMTXFER to transfer the
inputs to the workstation failed.

User response: Check the return code and messages
from FLMTXFER. Messages are in the ddname
specified by the MESSAGEDD parameter. Refer to the
FILEXFER ISPF service for additional information about
problems with transferring files.

Project manager response: None.

903

Explanation: The call to FLMTXFER to receive outputs
from the workstation failed.

User response: Check the return code and messages
from FLMTXFER. Messages are in the ddname
specified by the MESSAGEDD parameter. Refer to the
FILEXFER ISPF service for additional information about
problems with transferring files.

Project manager response: None.

999

Explanation: An error occured in FLMLTWST.

User response: Check the messages from FLMLTWST.

Project manager response: None.

User Information Example
The following shows a sample USERINFO data set and can be found in the
FLMWBUSR member in the ISPF sample library.
*
* Data_dir. Default is c:\.
* The subdirectory value from the actinfo file or the default of '\'
* will be appended to this value before the name of the workstation
* file. This directory and its subdirectories will be where SCLM
* transfers files to/from on the workstation.
*
data_dir c:\wb
*

248 z/OS V1R2.0 ISPF SCLM Reference

* Wsdir. Default is ISPF Client/Server directory.
* Directory from which the command will be executed. If a WSDIR
* keyword is also specified in the ACTINFO file, then it will be
* concatenated to the end of what is specified here.
* For commands that must run from the directory holding the data
* files (such as the resource compiler), this value should be the
* same as the data_dir value.
*
wsdir c:\wb
*
* Response_file. Default is c:\response.fil.
* Fully qualified name of the response file to contain all RPARM
* statements for an action. The name should include the drive and
* any subdirectories.
*
response_file c:\wb\response.fil
*
* Mode. Workstation build default is minimized. This will override any
* value set in the ACTINFO file.
* This is the mode for the workstation command. Valid values are:
* MAXimized, MINimized, VISible and INVISible. See the WSCMDV section
* of the ISPF SELECT service for additional information.
*
mode max
*
* Del_cmd. Default is 'del'.
* This keyword specifies the delete command to be used to remove the
* message file(s) from previous builds or build steps from the
* workstation before executing the workstation command.
*
del_cmd erase

ACTINFO Example
The following example shows an ACTINFO data set and can be found in the
FLMWBAIO member in the ISPF sample library.

* *
* SCLM type to workstation file name mapping *
* *
* The following statements define the mapping between SCLM type names *
* and workstation file extensions as well as the transfer format *
* for the data. The statements are processed in order. If the *
* member being processed does not match the first TYPE criteria, then *
* it will be compared to the next TYPE criteria and so on until a *
* match is found. *
* *

* *
* Types containing BINARY data *
* *
* This mapping indicates that the host SCLM type will be the *
* workstation file extension followed by BIN. The BIN pattern in *
* the type name will be used to indicate that members in these types *
* contain binary data. As an example, a member stored in the OBJBIN *
* type in SCLM, will be transferred as binary (no ASCII-to-EBCIDIC *
* conversion) with the workstation file name 'member.OBJ'. *
* *

TYPE *BIN
EXTENSION .*
TRANSFER_FORMAT BINARY
SUBDIRECTORY \

* *
* Types containing ASCII data *
* *

Chapter 5. SCLM Translators 249

* This mapping indicates that any members whose type does not match *
* the previous criteria (TYPE * will always match), will be processed *
* as ascii/text files. The workstation file extension will be the *
* same as the SCLM type. As an example, a member in the CPP type in *
* SCLM will have the workstation file name 'member.CPP'. *
* *

TYPE *
EXTENSION .*
TRANSFER_FORMAT ASCII
SUBDIRECTORY \
*

* *
* Workstation Commands *
* *
* The following statements define the actions/commands to be executed *
* on the workstation. *
* *

*
* C and C++ compile to generate object
*
ACTION COMPILE
COMMAND icc
RPARM -Fd
RPARM -c
RPARM -Gm+
RPARM -O+
RPARM &CMD_PARMS&
RPARM /Fo OBJBIN
RPARM /Fl LST
RPARM '' C
RPARM '' CPP
CPARM @&RESPONSE_FILE&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Preprocessor only
*
ACTION PREPROCESS
COMMAND icc
RPARM /Pe+
RPARM &CMD_PARMS&
RPARM '' C
RPARM '' CPP
RPARM '' IPF
RPARM '' RC
CPARM @&RESPONSE_FILE&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Dummy file for resource DLLs
* (compile with /Ge- option)
*
ACTION DUMMY
COMMAND icc
RPARM -Fd
RPARM -c
RPARM /Ge-
RPARM &CMD_PARMS&
RPARM /Fo OBJBIN

250 z/OS V1R2.0 ISPF SCLM Reference

RPARM /Fl LST
RPARM '' C
RPARM '' CPP
CPARM @&RESPONSE_FILE&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Link object into exe using CSET++
*
ACTION LINKEXE
COMMAND icc
RPARM /Ge+
RPARM &CMD_PARMS&
RPARM /Fe EXEBIN
RPARM /Fm MAP
RPARM '' OBJBIN
RPARM '' DEF
CPARM @&RESPONSE_FILE&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Link object into dll using CSET++
*
ACTION LINKDLL
COMMAND icc
RPARM /Ge-
RPARM &CMD_PARMS&
RPARM /Fe DLLBIN
RPARM /Fm MAP
RPARM '' OBJBIN
RPARM '' DEF
CPARM @&RESPONSE_FILE&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Link object into exe or dll using LINK386
*
ACTION LINK386
COMMAND link386
CPARMSEP NULL
CPARM &CMD_PARMS&
CPARM '' OBJBIN
CPARM ,
CPARM '' DLLBIN
CPARM '' EXEBIN
CPARM ,
CPARM '' MAP
CPARM ,
CPARM '' LIBBIN
CPARM ,
CPARMSEP
CPARM '' DEF
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Generate res file
*
ACTION RC
COMMAND rc

Chapter 5. SCLM Translators 251

CPARM -r
CPARM '-i &DATA_DIR&'
CPARM &CMD_PARMS&
CPARM '' RC
CPARM '' RESBIN
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Apply res file to an exe or dll
*
ACTION RCEXE
COMMAND rc
CPARM &CMD_PARMS&
CPARM '' RESBIN
CPARM '' EXEBIN
CPARM '' DLLBIN
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Generate hlp file
*
ACTION IPFC
COMMAND ipfc
CPARM '' IPF
CPARM &CMD_PARMS&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg
*
* Generate hlp file - input file specified on CMD statement
*
ACTION IPFCP
COMMAND ipfc
CPARM &CMD_PARMS&
CPARM 1>&DATA_DIR&\stdout.msg
CPARM 2>&DATA_DIR&\stderr.msg
MESSAGE_FILE &DATA_DIR&\stdout.msg
MESSAGE_FILE &DATA_DIR&\stderr.msg

The following example shows an architecture definition and the resulting
workstation commands using the previous ACTINFO dataset. This architecture
definition can be found in the ISPF sample library, member FLMWBSLE.

The architecture definition:
*
LKED EXE * link language
*
KREF OBJ * include generated object modules
*
INCLD MAHJONGG C * MAHJONGG SOURCE
INCLD TILE C * TILE SOURCE
SINC MAHJONGG DEF * DEF source
*
LOAD MAHJONGG EXEBIN * Generated .exe file
LMAP MAHJONGG MAP * Generated .map file
*
* Run resource compiler after the link completes
*
CMD ACTION RCEXE
*

252 z/OS V1R2.0 ISPF SCLM Reference

KREF OUT1 * include generated .res file
*
INCLD MAHJONGG RC * Source which produces MAHJONGG RESBIN
*

The language EXE (as specified by the LKED keyword) uses the action LINKEXE.
This results in the following command and response file:

The command:
icc @c:\wb\response.fil 1>c:\wb\stdout.msg 2>c:\wb\stderr.msg

The contents of the response file, c:\wb\response.fil:
/Ge+
/Fec:\wb\MAHJONGG.EXE
/Fmc:\wb\MAHJONGG.MAP
c:\wb\MAHJONGG.OBJ
c:\wb\TILE.OBJ
c:\wb\MAHJONGG.DEF

The CMD ACTION statement results in a second action, RCEXE. RCEXE issues the
following command:
rc c:\wb\MAHJONGG.RES c:\wb\MAHJONG.EXE 1>c:\wb\stdout.msg 2>c:\wb\stderr.msg

Language Definition Example
The following example shows a language definition using FLMLTWST to compile
C or C++ source on the workstation. This sample can be found in the ISPF macro
library as member FLM@WICC.

Chapter 5. SCLM Translators 253

* *
* SCLM LANGUAGE DEFINITION FOR IBM CSET/2 OR CSET++ FOR OS/2 *
* COMPILE SOURCE TO OBJECT *
* *

*
*
CPPOS2 FLMLANGL LANG=CPPOS2, C

VERSION=2, C
CHKSYSLB=IGNORE

*
FLMINCLS TYPES=(H,HPP,@@FLMTYP,@@FLMETP)

H FLMINCLS TYPES=(H)
HPP FLMINCLS TYPES=(HPP)
*
* PARSER
*

FLMTRNSL CALLNAM='C/C++ PARSE', C
FUNCTN=PARSE, C
CALLMETH=TSOLNK, C
COMPILE=FLMLRC2, C
PORDER=1, C
OPTIONS=(STATINFO=@@FLMSTP, C
LISTINFO=@@FLMLIS, C
LISTSIZE=@@FLMSIZ)

*
* (* SOURCE *)

FLMALLOC IOTYPE=A,DDNAME=SOURCE
FLMCPYLB @@FLMDSN(@@FLMMBR)

*
* BUILD
*

FLMTRNSL CALLNAM='C/C++', C
FUNCTN=BUILD, C
CALLMETH=ISPLNK, C
COMPILE=SELECT, C
VERSION=1, C
GOODRC=0, C
PORDER=1, C
OPTIONS='CMD(FLMLTWST ACTION=COMPILE,BMAPINFO=@@FLM$MP,SC
CLMINFO=@@FLMINF,BLDINFO=@@FLMBIO,PARMS='

*

Figure 6. C Language Definition (Part 1 of 2)

254 z/OS V1R2.0 ISPF SCLM Reference

* (* OBJ *)
FLMALLOC IOTYPE=P,RECFM=VB,LRECL=1024, C

RECNUM=4000,DDNAME=OBJ,CATLG=Y,KEYREF=OBJ, C
DFLTTYP=OBJBIN,DFLTMEM=*,LANG=EXE

* (* LIST *)
FLMALLOC IOTYPE=O,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=LIST,CATLG=Y,PRINT=I, C
KEYREF=LIST,DFLTTYP=LST

* (* USERINFO *)
FLMALLOC IOTYPE=A,DDNAME=USERINFO

FLMCPYLB @@FLMUID.SCLM.USERINFO
* (* ACTINFO *)

FLMALLOC IOTYPE=A,DDNAME=ACTINFO
FLMCPYLB @@FLMPRJ.PROJDEFS.ACTINFO

* (* MESSAGE *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,DISP=MOD, C

RECNUM=4000,DDNAME=MESSAGE,PRINT=I
* (* MSGXFER *)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C
RECNUM=4000,DDNAME=MSGXFER

* (* BMAP *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=BMAP,PRINT=I
* (* FILES *)

FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256,CATLG=Y, C
RECNUM=4000,DDNAME=FILES,PRINT=I

* (* RESPONSE *)
FLMALLOC IOTYPE=W,RECFM=VB,LRECL=256, C

RECNUM=4000,DDNAME=RESPONSE,PRINT=I,CATLG=Y
*

Figure 6. C Language Definition (Part 2 of 2)

Chapter 5. SCLM Translators 255

FLMTBMAP Build Map Print - Build Translator

Purpose
The FLMTBMAP translator generates a DBUTIL (Database Contents Utility) style
printout of the information in the build map of the member being built. The
information in the report matches the build map that will be saved if the build of
the member is successful. The information in this report may be different from the
information in the build map currently stored in VSAM.

Information about outputs that do not have the member name specified do not
show up in the report. The output information will be missing in the following
conditions:
v An architecture member is being built and the output is the result of an output

keyword with an ’*’ as the member name,
v A nonarchitecture member is being built and the output is the result of an

FLMALLOC with IOTYPE=P and no DFLTMEM was specified.

For architecture members that include the outputs of other members through INCL
or INCLD statements, the outputs that are included are identified by a SINC*
keyword before the output.

FLMTBMAP is a build translator and can be run only within the build
environment.

For an example of the usage of this translator see the FLMLTWST translator.

Parameters
All parameters are keyword parameters and can be specified in any order.
Parameters must be separated by commas. Extraneous parameters are ignored
without any messages being produced.

BMAPINFO=@@FLM$MP
This parameter is required and must be specified in the options list with the
value from @@FLM$MP.

SCLMINFO=@@FLMINF
This parameter is required and must be specified in the options list with the
value from @@FLMINF.

BLDINFO=@@FLMBIO
This parameter is required and must be specified inthe options list with the
value from @@FLMBIO.

BMAPDD=dd_name
This parameter is optional. It specifies the ddname where the build map report
will be written. If it is not specified, the FLMTBMAP translator will attempt to
write the report to a ddname of BMAP. This parameter will be truncated to 8
characters.

Return Codes

0

Explanation: The report was generated successfully.

User response: None.

Project manager response: None.

256 z/OS V1R2.0 ISPF SCLM Reference

4

Explanation: The build map is empty, no report was
produced.

User response: None.

Project manager response: None.

8

Explanation: The ddname for the report is not
allocated.

User response: Contact the project manager.

Project manager response: Ensure that the language
definition has an FLMALLOC for the ddname specified
by the BMAPDD parameter.

12

Explanation: The value for BMAPINFO is not valid.

User response: Contact the project manager.

Project manager response: Ensure that the
BMAPINFO parameter is specified in the options list,
that the parameter has a value of @@FLM$MP, and that
the translator has FUNCTN=BUILD.

16

Explanation: The value for SCLMINFO is not valid.

User response: Contact the project manager.

Project manager response: Ensure that the
SCLMINFO parameter is specified in the options list
and that the parameter has a value of @@FLMINF.

Chapter 5. SCLM Translators 257

FLMTMSI Interface to SCRIPT/VS

Purpose
This translator provides an interface to SCRIPT/VS via the TSO Service Facility.

SCRIPT is a TSO command and needs to be invoked by using the TSO command
processor interface. It cannot be invoked directly by FLMTRNSL. FLMTMSI builds
a SCRIPT command with a concatenation of the string following ’/’ in the
OPTIONS list.

Parameters
The options string passed to this translator should contain the user ID to be used
by SCRIPT/VS, delimited by a slash (/), and followed by a list of desired
SCRIPT/VS options. For example,

OPTIONS=(@@FLMUID/DEV(3800N8),CH(GT12,GB12),TW,CO, C
B(7,7),M(DELAY,TRACE,ID))

Return Codes
For the return codes 0 through 20 and return code 40, refer to the DCF SCRIPT/VS
documentation for the explanation of each return code.

24

Explanation: SCLM did not allocate TEXTOUT.

User response: Contact the project manager.

Project manager response: Verify that an FLMALLOC
macro has been coded for this translator with a
ddname of TEXTOUT for the SCRIPT/VS output file.
Reassemble the project definition. Verify that no errors
occurred. Relink the project definition. For more
information see “FLMALLOC Macro” on page 130.

28

Explanation: SCLM did not allocate TEXTIN.

User response: Contact the project manager.

Project manager response: Verify that an FLMALLOC
macro has been coded for this translator with a
ddname of TEXTIN for the SCRIPT/VS source file.
Reassemble the project definition. Verify that no errors
occurred. Relink the project definition. For more
information see “FLMALLOC Macro” on page 130.

36

Explanation: The user ID was not specified in the
input, or the parameter list has an incorrect format.

User response: Contact the project manager.

Project manager response: Verify that the options list
is in the correct format for this translator. Reassemble
the project definition. Verify that no errors occurred.
Relink the project definition.

258 z/OS V1R2.0 ISPF SCLM Reference

FLMTPRE

Purpose
FLMTPRE is the precompile processor called before a translator that processes
input lists. FLMTPRE supports both non-Ada and Ada input lists. It initializes the
ADA library file (DDNAME=ADALIB) with the names of the sublibraries required
to perform the ADA compile by the next translator. It also initializes the input list
file (DDNAME=ADAIN) with the names of the source members to be compiled.
The translator that processes the data sets uses this list of data sets as input.

The input list data set allocated to the ADAIN ddname contains a list of members
in compilation order to be built. Each member is listed in the data set using its
fully-qualifed name enclosed in single quotes. Here is a description of the ADAIN
format and a sample input list.
Start Column Length Description

1 56 Fully-qualified project partitioned data set name,
enclosed in single quotes.

'PROJECT1.RELEASE.SOURCE(SUB4)'
'PROJECT1.INT.SOURCE(PROC2)'
'PROJECT1.STAGE.SOURCE(SUB2)'
'PROJECT1.USER.SOURCE(PROC1)'
'PROJECT1.INT.SOURCE(MAIN)'

If a non-Ada language is used, direct the ddname ADALIB to NULLFILE:
FLMALLOC IOTYPE=W,DDNAME=ADALIB
FLMCPYLB NULLFILE

and do not specify parameters SUBLIB1...SUBLIB8 on the FLMTRNSL macro for
calling FLMTPRE.

The names of the sublibrary data sets will be placed in the Ada Library file by
FLMTPRE. The names are listed in the following order:
sublibraries controlled by SCLM
sublibraries not controlled by SCLM

You can pass up to 8 sublibraries NOT under SCLM control to FLMTPRE using the
SUBLIB# parameter (as noted below). These sublibraries are usually system-level
or runtime sublibraries.

The CU qualifier used to create the sublibrary names is the SUFFIX specified on
the input parameter string. If the SUFFIX parameter is not specified, the cu_qual
on the FLMLANGL macro is used to generate sublibrary names.

Parameters
The following keyword parameters are expected as input to FLMTPRE:

DDMSGS
This is an optional parameter to specify a ddname for messages. The default is
FLMTMSGS.

FLM_INFO
This parameter is used to access the list of members to be placed into the input
list file. The name of each member is placed into the input list file, and then
the input list file is allocated to the ddname ADAIN. This parameter is
required and must be set to @@FLMINF.

Chapter 5. SCLM Translators 259

SUBLIB1...SUBLIB8
Sublibrary not under SCLM control to be added. These are optional
parameters. You can specify up to 8 of these sublibraries. When not specified,
these parameters default to DUMMY.

SUFFIX
Suffix to use when generating sublibrary names (that is, the CU qualifier). This
parameter is optional. If it is not specified, the CU qualifier on the
FLMLANGL macro is used to generate the sublibrary name.

Return Codes

0

Explanation: Indicates a successful completion.

User response: None.

Project manager response: None.

4

Explanation: The sublibrary name is longer than MVS
allows. The sublibrary name is formed by
concatenating the suffix to the project data set name
specified for the group and type being processed.

User response: Contact the project manager.

Project manager response: The physical data set name
concatenated with the suffix cannot exceed 44
characters. The data set name must be shortened in the
project definition.

8

Explanation: The FLM_INFO parameter does not
specify a valid SCLM information record pointer.

User response: Contact the project manager.

Project manager response: The FLM_INFO parameter
is either missing or does not specify a valid pointer to
the SCLM information record. This parameter should
be specified as follows: FLM_INFO=@@FLMINF.
Correct this parameter on the translator definition in
the project definition being used. Regenerate the project
definition. Submit the job again.

260 z/OS V1R2.0 ISPF SCLM Reference

FLMTPST

Purpose
This translator is the Input List compiler post-compile processor. The Input list
feature supports translators that allow the user to specify a list of input data sets
for each invocation. Because the translator performing the processing will be
operating on a list of files, a list of return codes must be provided to SCLM to
correctly manage the build. The FLMTPST translator passes return code
information back to SCLM.

The FLMTPST translator takes as input the file allocated to the ADAOUT ddname.
The data set pointed to by the ddname ADAOUT must contain lines beginning
with * or RC=XX, with the first nonblank character in column one. Each line within
the data set that contains RC= in columns 1–3 is processed. Lines beginning with
an asterisk(*) are considered comments and are ignored. Each line containing RC=
in columns 1 through 3 must follow this format:
RC=XX 'DATA SET NAME(MEMBER)'

The data set name is the same as that specified in the Input list generated by the
FLMTPRE translator. The lines in the ADAOUT file must match the order of the
lines in the ADAIN file that was generated by FLMTPRE. If the order does not
match, an error is generated and the FLMTPST translator stops. Here is the format
and a sample of the ADAOUT file.
Start Column Length Description

1 1 The character "*" followed by anything up to 255 characters
- OR -

1 3 String 'RC='
4 2 Two-character integer return code
6 1 Blank space
7 56 Fully-qualified project partitioned data set name,

enclosed in single quotes.

RC=00 'PROJECT1.RELEASE.SOURCE(SUB4)'
RC=04 'PROJECT1.INT.SOURCE(PROC2)'
RC=00 'PROJECT1.STAGE.SOURCE(SUB2)'
RC=04 'PROJECT1.USER.SOURCE(PROC1)'
RC=00 'PROJECT1.INT.SOURCE(MAIN)'

Parameters
FLMTPST requires the following keyword parameter:

FLM_INFO
Pointer to the SCLM information record. This parameter must be set to
@@FLMINF.

Return Codes

0

Explanation: Indicates a successful completion.

User response: None.

Project manager response: None.

4

Explanation: At lease one, but not all, of the members
processed were built successfully.

User response: Check the build messages produced to
determine which members failed to build successfully.

Project manager response: None.

8

Explanation: The FLM_INFO parameter does not
specify a valid SCLM information record pointer.

User response: Contact the project manager.

Project manager response: The FLM_INFO parameter

Chapter 5. SCLM Translators 261

is either missing or does not specify a valid pointer to
the SCLM information record. This parameter should
be specified as follows: FLM_INFO=@@FLMINF.
Correct this parameter on the translator definition in
the project definition being used. Regenerate the project
definition. Submit the job again.

12

Explanation: The compiler output file allocated to
ddname ADAOUT contains some unexpected
information.

User response: Contact the project manager.

Project manager response: Verify that the file
allocated to the ADAOUT ddname is the output file
generated by the input list compiler. To do this, look at
the contents of the file allocated to ADAOUT. Specify
the PRINT=Y parameter on the FLMALLOC macro for
the ADAOUT file allocation for the input list compiler
translator definition. Regenerate the project definition
you are using, and submit the job again. The job output
will contain the contents of the file allocated to
ADAOUT.

For IBM Ada/370, the compiler documentation lists the
contents of the output file generated by the input list
compile. Verify that the contents of the ADAOUT file
printed in the job output conform to the documented
values in the compiler documentation. If they do not
match, report this problem to your IBM service
representative.

When the information in the ADAOUT file is not as
expected, contact your IBM service representative for
assistance.

16

Explanation: Indicates that a line in the output file
allocated to ddname ADAOUT has an unexpected
format.

User response: Contact the project manager.

Project manager response: See the project manager
response described for return code 12 of this translator.

20

Explanation: Indicates the file allocated to the
ADAOUT ddname is empty.

User response: Verify that the input list compiler was
successfully invoked and produced an output file. If
necessary, contact the project manager.

Project manager response: Verify that the ADAOUT
ddname was allocated for the invocation of the input
list compiler. If necessary, add an FLMALLOC macro
for the ADAOUT ddname to the input list compiler
translator definition. Regenerate the project definition
and submit the job again. If this problem recurs, report

this problem to your IBM service representative for
assistance.

24

Explanation: Indicates that the ADAOUT ddname is
not allocated.

User response: Contact the project manager.

Project manager response: This could indicate
improper usage of the FLMTPST translator. The
FLMTPST translator should be invoked only after the
input list compiler has been invoked. Verify that the
language definition being used is for input list
processing and that the FLMTPST translator is being
invoked after the input list translator.

Also, verify that there is an FLMALLOC macro
specified for the ADAOUT ddname for a pervious
build translator in the current Ada language definition.
If either of these problems are present, change the
language definition, the project definition, or both to
correct the problem. Regenerate the project definition
and submit the job again.

262 z/OS V1R2.0 ISPF SCLM Reference

FLMTXFER Workstation Transfer - Build Translator

Purpose
The FLMTXFER translator uses the FILEXFER service to send and receive files
from a workstation. When sending files to the workstation, the source data sets on
the host (MVS) system can be SCLM members, sequential data sets, or members of
partitioned data sets. When receiving files from the workstation, the target data
sets on the host (MVS) system can be sequential data sets or members of
partitioned data sets.

When transferring SCLM members to the workstation, SCLM keeps track of which
members have been sent to the workstation during a build and only sends each
member to the workstation one time during the build.

For an example of the usage of this translator, see the FLMLTWST translator.

Parameters
All parameters are keyword parameters and can be specified in any order.
Parameters must be separated by commas. Extraneous parameters are ignored
without any messages being produced.

COMMAND=PUT│GET
This parameter is required and must be specified in the options list. The valid
values are:
PUT Use this value to send files to the workstation.
GET Use this value to retrieve files from the workstation.

This parameter will be truncated to 3 characters.

BLDINFO=@@FLMBIO
This parameter is required and must be specified in the options list with the
value from @@FLMBIO.

SCLMINFO=@@FLMINF
This parameter is required and must be specified in the options list with the
value from @@FLMINF.

MESSAGEDD=dd_name
This parameter is optional. If not specified, it defaults to MESSAGE. This is the
ddname where messages will be written. This parameter will be truncated to 8
characters.

FILESDD=dd_name
This parameter is optional. If not specified, it defaults to FILES. This is the
ddname containing the list of files to transfer. This parameter will be truncated
to 8 characters. The data set allocated to this ddname must list one transfer
specification per line. Each part of the transfer specification must be separated
from other parts by one or more spaces. The following information must be
provided with each transfer specification:

transfer format
This is a single character value that specifies the format of the
file transfer.

A Translate to ASCII

B No translation

host data This specifies what data set or member is the source or target

Chapter 5. SCLM Translators 263

of the transfer. If COMMAND=PUT is specified, this is the
source of the file transfer. If COMMAND=GET is specified, this
is the target of the file transfer. The format varies depending
on the data being transferred.

For COMMAND=PUT, use IOTYPE=P to take advantage of the
build caching function.

Data Format

SCLM member
member.type

This format is only valid for
COMMAND=PUT. The member name must be
separated from the type name by a period. The
member must be in the scope of the build.
These members are tracked during the build
and only sent to the workstation once even if
FLMTXFER is called multiple times with the
same member. FLMTXFER finds the member in
the SCLM hierarchy and generates a
fully-qualified data set name with the member
name for the file transfer.

Data set ’data.set.name’

This format transfers a fully-qualified data set
name. The data set must be sequential or
specify the member name. The data set name
must be surrounded by quotes. SCLM does not
track the data sets sent to the workstation. If
FLMTXFER is called multiple times to transfer
the same data set, the data set is transferred
each time.

ddname DDNAME:member

The member name is optional, but the colon (:)
must be specified. The data set allocated to the
ddname must be cataloged (CATLG=Y on the
FLMALLOC). FLMTXFER gets the data set
name allocated to the ddname and specifies it
in the file transfer command.

workstation file name
The fully-qualified workstation file name
including the drive and path, if they apply.

Environment
The FLMTXFER translator must have access to ISPF services. It must be called
from an FLMTRNSL with CALLMETH=ISPLNK.

Return Codes
In addition to the return codes listed here, messages can be written to the ddname
specified by the MESSAGEDD parameter.

264 z/OS V1R2.0 ISPF SCLM Reference

0

Explanation: The transfer was successful.

User response: None.

Project manager response: None.

8

Explanation: An error occurred. See the ddname
specified by the MESSAGEDD parameter for more
information.

User response: Refer to the generated messages. See
the ISPF Messages and Codes manual for an explanation
of the messages.

Project manager response: None.

12

Explanation: The ddname specified by the
MESSAGEDD parameter is not allocated.

User response: Contact the project manager.

Project manager response: Ensure that the ddname
for messages is allocated by an FLMALLOC in the
language definition or by the translator that calls
FLMTXFER.

16

Explanation: The value for SCLMINFO is not valid.

User response: Contact the project manager.

Project manager response: Ensure that the
SCLMINFO parameter is specified in the options list
and that the parameter has a value of @@FLMINF.

FILES DD Example
The following examples show the content of the FILES ddname. The first shows
how to send compiler inputs to a workstation and the second how to retrieve the
outputs.

Given COMMAND=PUT, in the first example the following transfers take place:
1. The data set allocated to the RESPONSE ddname is sent to

c:\temp\response.file in ASCII format.
2. The member PMLINES in type C is found in the SCLM hierarchy and sent to

c:\temp\PMLINES.c in ASCII format.
3. The member PMLINES in type H is found in the SCLM hierarchy and sent to

c:\temp\PMLINES.h in ASCII format.
4. The data set ’PROJ1.C.LIB’ is sent to c:\temp\proj1.lib in BINARY format.
A RESPONSE: c:\temp\response.fil
A PMLINES.C c:\temp\PMLINES.c
A PMLINES.H c:\temp\PMLINES.h
B 'PROJ1.C.LIB' c:\temp\proj1.lib

Given COMMAND=GET, in the second example the following transfers take place:
1. The file c:\temp\PMLINES.obj is sent to the member PMLINES in the data set

allocated to the OBJ ddname in BINARY format.
2. The file c:\temp\PMLINES.lst is sent to the member PMLINES in the data set

allocated to the LIST ddname in ASCII format.
3. The file c:\temp\temp.msg is sent to the data set ’SCLMUSR.C.MSGS’ in ASCII

format.
B OBJ:PMLINES c:\temp\PMLINES.obj
A LIST:PMLINES c:\temp\PMLINES.lst
A 'SCLMUSR.C.MSGS' c:\temp\temp.msg

Chapter 5. SCLM Translators 265

SCLM Parser Restrictions
The SCLM parsers gather statistics on various language constructs. This section
describes the constructs that the SCLM parsers cannot identify. Because a
user-defined parser can be used to replace an SCLM parser, the restrictions of the
SCLM-supplied parsers can be overcome, if necessary.

Unsupported constructs do not necessarily prevent members from being used in
SCLM. Invalid constructs, however, prevent statistics from being gathered
accurately and can result in SCLM finding too many or too few include references.
Extra or missing includes can result in dependency processing errors being
detected by the build and promote processors.

SCLM does not support three general types of language constructs. Each of these
constructs involves include and compool references. The constructs discussed in
this chapter are:
v Cross-type references
v Non-explicit references
v Separation of references.

Non-Explicit References
SCLM-supplied parsers do not support include references that are not explicitly
stated on a single line of code.

The following list shows three kinds of non-explicit reference constructs.
v Conditional References

Conditional references are include reference constructs that depend on information
outside the scope of a single line. For the assembler language parser, for
instance, all macros are considered include references whether or not they are
defined within that assembly source member. All include references must exist
as SCLM members, or they must exist in data set FLMSYSLB references.

v Dynamic References

Dynamic references are references that involve a variable. SCLM does not support
macro names passed as parameters in assembler language for include references.
The following source statements for SCRIPT/VS depict a simple case of a
dynamic imbed reference that SCLM does not support:
.set count = 1
.im member

v Variable Delimiters

The delimiters you use to identify information must have fixed values. For
example, SCLM does not support the following format of the .DM script
keyword:
.DM name /.im seg1/.im seg2/.im seg3/

where / can be any character. This character delimits statements in the macro.
SCLM does not find imbed statements entered in the .DM macro when the
macro appears in this way.

SCLM also does not support the following format of the .DM macro:
.DM name ON
.im seg1
.im seg2
.im seg3
.DM OFF

266 z/OS V1R2.0 ISPF SCLM Reference

Separation of References
Generally, you must separate include reference verbs of a language from referenced
member names with blanks only, and they must appear on the same line.
However, there are two exceptions:
v For PL/I includes and JOVIAL members, when coding !COPY or !COMPOOL

statements, you can insert comments between !COPY and the include member
name. (Note that only JOVIAL uses !COMPOOL.)

v The following parsers support include references on separate lines:
– FLMLPCBL COBOL parser
– FLMLRCBL REXX COBOL parser
– FLMLRASM REXX Assembler parser.

SCLM does not support the following Pascal source statement because a comment
separates the referenced member name.
%INCLUDE (* comment *) MEMNAME;

The include reference verb and the reference name must reside on the same line.
SCLM does not support the following Pascal statement:
%INCLUDE
INCLMEM ;

Chapter 5. SCLM Translators 267

268 z/OS V1R2.0 ISPF SCLM Reference

Chapter 6. SCLM Variables and Metavariables

This chapter lists the SCLM variables and metavariables you can use in various
stages of SCLM processing.

SCLM Variable and Metavariable Descriptions
SCLM variables are character strings that SCLM replaces with a value. SCLM
replaces these variables with eight-character values except for the following:
v @@FLMBD4 variable has a value with a maximum length of 10
v @@FLMCD4 variable has a value with a maximum length of 10
v @@FLMDOx variable has a value with a maximum length of 44 (x is an integer

between 0 and 9).
v @@FLMDSD variable has a value with a maximum length of 44
v @@FLMDSF variable has a value with a maximum length of 44
v @@FLMDSN variable has a value with a maximum length of 44
v @@FLMDST variable has a value with a maximum length of 44
v @@FLMICN variable has a value with a maximum length of 110
v @@FLMID4 variable has a value with a maximum length of 10
v @@FLMINC variable contains an address in decimal character format
v @@FLMINF variable contains an address in decimal character format
v @@FLMLIS variable contains an address in decimal character format
v @@FLMMD4 variable has a value with a maximum length of 10
v @@FLMPD4 variable has a value with a maximum length of 10
v @@FLMSTP variable contains an address in decimal character format
v @@FLMXCN variable has a value with a maximum length of 110
v @@FLM$C4 variable has a value with a maximum length of 10
v @@FLM$MP variable has a value with a maximum length of the build map.
v @@FLM$UD variable has a value with a maximum length of 128
v @@FLM$XD variable has a value with a maximum length of 110
v @@FLM$XN variable has a value with a maximum length of 110
v @@FLM$XU variable has a value with a maximum length of 110

In addition to these variables, SCLM has metavariables that represent SCLM
internal tracking data. Table 10 on page 280 lists the SCLM metavariables and their
corresponding SCLM variables. Use a metavariable in place of a combination of
single SCLM variables. Variables are listed in the order in which their data values
appear in the database contents utility report. There are metavariables for the fixed
portion of the data and for the long (repeating) portion of the data. Table 9 on
page 279 lists the SCLM metavariables and a short description of each.

You can use SCLM variables in the following places:
v On the FLMINCLS macro TYPES parameter. The following variables are

supported for this parameter:
– @@FLMCRF
– @@FLMECR
– @@FLMETP
– @@FLMTYP

v With the PARM and PARMX architecture definition keywords
v On the FLMTRNSL macro OPTIONS parameter

© Copyright IBM Corp. 1990, 2001 269

v On the FLMALLOC macro MEMBER parameter. The following variables are
supported for this parameter:
– @@FLMMBR
– @@FLMONM

v On the FLMCPYLB macro. The following variables are supported for
FLMCPYLB statements associated with an IOTYPE I or an IOTYPE A
FLMALLOC macro:
– @@FLMALT
– @@FLMDBQ
– @@FLMDSN
– @@FLMGRB
– @@FLMGRP
– @@FLMMBR
– @@FLMPRJ
– @@FLMSRF
– @@FLMTYP
– @@FLMUID

Note that @@FLMDSN and @@FLMGRP reflect the group where the member
being built resides. Use @@FLMGRB for the name of the group where the build
is being performed.

v On the Database Contents Utility line format parameter (DBUTIL)
v On the DSNAME parameter on the FLMCNTRL and FLMALTC macros. The

following variables are supported for these parameters:
– @@FLMGRP
– @@FLMPRJ
– @@FLMTYP

v On the EXPACCT and EXPXREF parameters of the FLMCNTRL and FLMALTC
macros. The following variables are supported for these parameters:
– @@FLMGRP
– @@FLMPRJ
– @@FLMUID

v On the VERPDS parameter of the FLMCNTRL and FLMALTC macros. The
following variables are supported for these parameters:
– @@FLMDSN
– @@FLMGRP
– @@FLMPRJ
– @@FLMTYP

Many of the variables can be used only for certain translator types and the SCLM
utilities. Table 7 lists the SCLMvariables in alphabetic order by description and
indicates for which translator types they can be used. Table 8 on page 275 lists the
SCLM variables in alphabetic order by variable name.

SCLM Variable and Metavariable Tables
The following tables illustrate SCLM variables and metavariables and their SCLM
functions. Pass these variables to a translator using the OPTIONS= parameter of
the FLMTRNSL macro.

Variables marked with a P are passed to PDS member (PDSDATA=Y on the
FLMTRNSL macro) translators.

270 z/OS V1R2.0 ISPF SCLM Reference

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Variables marked with an I are passed to Ada Intermediate translators (PDSDATA=N
on the FLMTRNSL macro.)

Variables marked with an E are passed to the External dependency translators
(such as CSP/370AD.)

Variables marked with a U are passed to the DBUTIL service.

Note: Certain variables are passed to multiple translators depending on their
function and data.

SCLM Variable Descriptions, Variable Names, and Their SCLM
Functions

Table 7 lists the SCLM variables in alphabetic order by their short description.

Table 7. SCLM Variable Descriptions, Names, and Their SCLM Functions

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Access Key @@FLMACK U

Accounting Group @@FLMGRP P P I E P P I E P U

Accounting Group
Data Set Name @@FLMDSN P P P P P U

Accounting
Member @@FLMMBR P P P P P U

Accounting Record
Type @@FLMATP U

Accounting Status @@FLMSTA U

Accounting Type @@FLMTYP P P P P P U

Alternate Project
Definition @@FLMALT P P I P P I P U

Assignment
Statements @@FLMASG U

Authorization
Code @@FLMACD U

Authorization
Code Change @@FLMACC U

Blank Lines @@FLMBLL U

Buffer Size in
Bytes @@FLMSIZ P E E P E E

Build Group @@FLMGRB P U

Build Map @@FLM$MP P U

Build Map
Information @@FLMBIO P

Build Map Date @@FLMMDT P P P U

Build Map Date
with 4-character
year @@FLMMD4 P P P U

Build Map Name @@FLMMNM U

Chapter 6. SCLM Variables and Metavariables 271

Table 7. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Build Map Time @@FLMMTM P P P U

Build Map Type @@FLMMSC U

Build Mode @@FLMBMD E

Calling Function
Name @@FLMFNM P I P I P

Change Code @@FLM$CC U

Change Code Date @@FLM$CD U

Change Code Date
with 4-character
year @@FLM$C4 U

Change Code Time @@FLM$CT U

Change Date @@FLMCDT P P P U

Change Date with
4-character year @@FLMCD4 P P P U

Change Group @@FLMCLV U

Change Time @@FLMCTM P P P U

Change User ID @@FLMCUS U

Comment Lines @@FLMCML U

Comment
Statements @@FLMCMS U

Control Statements @@FLMCNS U

Creation Date @@FLMIDT U

Creation Date with
4-character year @@FLMID4 U

Creation Time @@FLMITM U

CREF Type @@FLMCRF

CU List @@FLMLST I I

Database Qualifier @@FLMDBQ P I I U

Data Set Name for
OUT0 @@FLMDO0 P E

Data Set Name for
OUT1 @@FLMDO1 P E

Data Set Name for
OUT2 @@FLMDO2 P E

Data Set Name for
OUT3 @@FLMDO3 P E

Data Set Name for
OUT4 @@FLMDO4 P E

Data Set Name for
OUT5 @@FLMDO5 P E

Data Set Name for
OUT6 @@FLMDO6 P E

272 z/OS V1R2.0 ISPF SCLM Reference

Table 7. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Data Set Name for
OUT7 @@FLMDO7 P E

Data Set Name for
OUT8 @@FLMDO8 P E

Data Set Name for
OUT9 @@FLMDO9 P E

DDNAME
Substitution List @@FLMDDN P

Default Type @@FLMSRF P

Dependencies
Pointer @@FLMLIS P E E P E E

Destination Group @@FLMGRD P P P

Destination Group
Data Set Name @@FLMDSD P P P

Dynamic Includes
Pointer @@FLMINC P

Extended CREF
Type @@FLMECR

Extended Type of
Source Member @@FLMETP

Function
Invocation Date @@FLMFDT P P P P

Function
Invocation Time @@FLMFTM P P P P

Group Found @@FLMGRF P P P

Group Found Data
Set Name @@FLMDSF P P P

Include @@FLM$IN U

Include-Sets for
Includes @@FLM$IS U

Language @@FLMLAN P P P U

Language Version @@FLMLVS U

Member Version @@FLMMVR U

Number of
Change Codes @@FLMNCC U

Number of
Includes @@FLMNIN U

Number of
Noncomment
Lines @@FLMNCL U

Number of
Noncomment
Statements @@FLMNCS U

Number of User
Entries @@FLMNUE U

Chapter 6. SCLM Variables and Metavariables 273

Table 7. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Output Member
Name @@FLMONM

OUT0 Member
Name @@FLMOU0 P

OUT1 Member
Name @@FLMOU1 P

OUT2 Member
Name @@FLMOU2 P

OUT3 Member
Name @@FLMOU3 P

OUT4 Member
Name @@FLMOU4 P

OUT5 Member
Name @@FLMOU5 P

OUT6 Member
Name @@FLMOU6 P

OUT7 Member
Name @@FLMOU7 P

OUT8 Member
Name @@FLMOU8 P

OUT9 Member
Name @@FLMOU9 P

Predecessor Date @@FLMBDT U

Predecessor Date
with 4-character
year @@FLMBD4 U

Predecessor Time @@FLMBTM U

Project @@FLMPRJ P P I P P I P U

Prolog Lines @@FLMPRL U

Promote Date @@FLMPDT U

Promote Date with
4-character year @@FLMPD4 U

Promote Time @@FLMPTM U

Promote User ID @@FLMPUS U

SCLM Internal
Data Pointer @@FLMINF P E P I E P I E P E

SCLM Version @@FLMVER U

Static Pointer @@FLMSTP P

Sysprint
DDNAME @@FLMDDO P I P I P

System User ID @@FLMUID P P P P

Target Group @@FLMTOG P I E P E P

Target Group Data
Set Name @@FLMDST P P P

274 z/OS V1R2.0 ISPF SCLM Reference

Table 7. SCLM Variable Descriptions, Names, and Their SCLM Functions (continued)

SCLM Short
Description Variable Build Copy Parse Purge Verify Utils

Top CU Name @@FLMCUN P

Total Lines @@FLMTLL U

Total Statements @@FLMTLS U

Translator Version @@FLMTVS U

User Data Entry @@FLM$UD U

SCLM Variables and Their SCLM Functions
Table 8 lists the SCLM variables in alphabetic order by variable name.

Table 8. SCLM Variables and Their SCLM Functions

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMACC
Authorization Code
Change U

@@FLMACD Authorization Code U

@@FLMACK Access Key U

@@FLMALT
Alternate Project
Definition P P I P P I P U

@@FLMASG
Assignment
Statements U

@@FLMATP
Accounting Record
Type U

@@FLMBDT Predecessor Date U

@@FLMBD4

Predecessor Date
with 4-character
year U

@@FLMBIO
Build Map
Information P

@@FLMBLL Blank Lines U

@@FLMBMD Build Mode E

@@FLMBTM Predecessor Time U

@@FLMCDT Change Date P P P U

@@FLMCD4
Change Date with
4-character year P P P U

@@FLMCLV Change Group U

@@FLMCML Comment Lines U

@@FLMCMS
Comment
Statements U

@@FLMCNS Control Statements U

@@FLMCRF CREF Type

@@FLMCTM Change Time P P P U

@@FLMCUN Top CU Name P

@@FLMCUS Change User ID U

Chapter 6. SCLM Variables and Metavariables 275

Table 8. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMDBQ Database Qualifier P I I U

@@FLMDDN
DDNAME
Substitution List P

@@FLMDDO Sysprint DDNAME P I P I P

@@FLMDO0
Data Set Name for
OUT0 P E

@@FLMDO1
Data Set Name for
OUT1 P E

@@FLMDO2
Data Set Name for
OUT2 P E

@@FLMDO3
Data Set Name for
OUT3 P E

@@FLMDO4
Data Set Name for
OUT4 P E

@@FLMDO5
Data Set Name for
OUT5 P E

@@FLMDO6
Data Set Name for
OUT6 P E

@@FLMDO7
Data Set Name for
OUT7 P E

@@FLMDO8
Data Set Name for
OUT8 P E

@@FLMDO9
Data Set Name for
OUT9 P E

@@FLMDSD
Destination Group
Data Set Name P P P

@@FLMDSF
Group Found Data
Set Name P P P

@@FLMDSN
Accounting Group
Data Set Name P P P P P U

@@FLMDST
Target Group Data
Set Name P P P

@@FLMECR
Extended CREF
Type

@@FLMETP
Extended Type of
Source Member

@@FLMFDT
Function Invocation
Date P P P P

@@FLMFNM
Calling Function
Name P I P I P

@@FLMFTM
Function Invocation
Time P P P P

@@FLMGRB Build Group P

@@FLMGRD Destination Group P P P

@@FLMGRF Group Found P P P

276 z/OS V1R2.0 ISPF SCLM Reference

Table 8. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMGRP Accounting Group P P I E P P I E P U

@@FLMIDT Creation Date U

@@FLMID4
Creation Date with
4-character year U

@@FLMINC
Dynamic Includes
Pointer P

@@FLMINF
SCLM Internal Data
Pointer P E P I E P I E P E

@@FLMLAN Language P P P U

@@FLMLIS
Dependencies
Pointer P E E P E E

@@FLMLST CU List I I

@@FLMLVS Language Version U

@@FLMMBR
Accounting
Member P P P P P U

@@FLMMDT Build Map Date P P P U

@@FLMMD4

Build Map Date
with 4-character
year P P P U

@@FLMMNM Build Map Name U

@@FLMMSC Build Map Type U

@@FLMMTM Build Map Time P P P U

@@FLMMVR Member Version U

@@FLMNCC
Number of Change
Codes U

@@FLMNCL
Number of
Noncomment Lines U

@@FLMNCS

Number of
Noncomment
Statements U

@@FLMNIN
Number of
Includes U

@@FLMNUE
Number of User
Entries U

@@FLMONM
Output Member
Name

@@FLMOU0
OUT0 Member
Name P

@@FLMOU1
OUT1 Member
Name P

@@FLMOU2
OUT2 Member
Name P

@@FLMOU3
OUT3 Member
Name P

Chapter 6. SCLM Variables and Metavariables 277

Table 8. SCLM Variables and Their SCLM Functions (continued)

Variable
SCLM Short
Description Build Copy Parse Purge Verify Utils

@@FLMOU4
OUT4 Member
Name P

@@FLMOU5
OUT5 Member
Name P

@@FLMOU6
OUT6 Member
Name P

@@FLMOU7
OUT7 Member
Name P

@@FLMOU8
OUT8 Member
Name P

@@FLMOU9
OUT9 Member
Name P

@@FLMPDT Promote Date U

@@FLMPD4
Promote Date with
4-character year U

@@FLMPRJ Project P P I P P I P U

@@FLMPRL Prolog Lines U

@@FLMPTM Promote Time U

@@FLMPUS Promote User ID U

@@FLMSIZ Buffer Size in Bytes P E E P E E

@@FLMSRF Default Type P

@@FLMSTA Accounting Status U

@@FLMSTP Static Pointer P

@@FLMTLL Total Lines U

@@FLMTLS Total Statements U

@@FLMTOG Target Group P I E P E P

@@FLMTVS Translator Version U

@@FLMTYP Accounting Type P P P P P U

@@FLMUID System User ID P P P P

@@FLMVER SCLM Version U

@@FLM$CC Change Code U

@@FLM$CD Change Code Date U

@@FLM$C4

Change Code Date
with 4-character
year U

@@FLM$CT Change Code Time U

@@FLM$IN Include U

@@FLM$IS
Include-Sets for
Includes U

@@FLM$MP Build Map U

@@FLM$UD User Data Entry U

278 z/OS V1R2.0 ISPF SCLM Reference

SCLM Metavariable Descriptions, Metavariable Names, and
Their SCLM Functions

Table 9 lists the SCLM metavariables in alphabetic order by description.
Metavariables are only used with the DBUTIL service.

Table 9. SCLM Metavariable Descriptions, Names, and Their SCLM Functions

SCLM Short
Description Metavariable Build Copy Parse Purge Verify Utils

Account Report
Fixed

@@FLM#AF U

Account Report
Long

@@FLM#AL U

SCLM Metavariable Contents
Table 10 on page 280 lists the SCLM metavariables and their corresponding SCLM
variables. A metavariable represents a list of predefined SCLM variables.
Specifying a metavariable is equivalent to specifying its corresponding list of
SCLM variables in the order listed in Table 10 on page 280.

Chapter 6. SCLM Variables and Metavariables 279

Table 10. SCLM Metavariables and Their Corresponding Variables

Metavariable Variable

@@FLM#AF @@FLMPRJ
@@FLMALT
@@FLMGRP
@@FLMTYP
@@FLMMBR
@@FLMVER
@@FLMSTA
@@FLMCDT
@@FLMCTM
@@FLMCLV
@@FLMCUS
@@FLMMVR
@@FLMLAN
@@FLMATP
@@FLMLVS
@@FLMACD
@@FLMACC
@@FLMACK
@@FLMIDT
@@FLMITM
@@FLMMDT
@@FLMMTM
@@FLMBDT
@@FLMBTM
@@FLMPDT
@@FLMPTM
@@FLMPUS
@@FLMDBQ
@@FLMTVS
@@FLMMNM
@@FLMMSC
@@FLMTLL
@@FLMCML
@@FLMNCL
@@FLMBLL
@@FLMPRL
@@FLMTLS
@@FLMCMS
@@FLMCNS
@@FLMASG
@@FLMNCS
@@FLMNUE
@@FLMNIN
@@FLMNCC
@@FLMNCU
@@FLM$IN
@@FLM$IS
@@FLM$CC
@@FLM$CD
@@FLM$CT

@@FLM#AL @@FLM$XT
@@FLM$XN
@@FLM$UD

280 z/OS V1R2.0 ISPF SCLM Reference

Description of Group Variables
This section further explains the use of group variables. Table 11 lists each group
variable and associated group data set name variable. This shows the relationship
between SCLM groups and the data sets defined in the project definition for each
group.

Table 12 on page 282 is an example that lists the values of each group variable
during the phases of a promote. After Table 11 is an overall description of the four
group variables and why each is needed. Each group variable has a corresponding
data set name variable due to the flexible data set name capability.

Table 11. SCLM Group Variable List

Group Variable
Group Data Set
Name Variable Description

@@FLMGRP @@FLMDSN Accounting Group and Accounting Group
Data Set Name

@@FLMGRF @@FLMDSF Group Found and Group Found Data Set
Name

@@FLMTOG @@FLMDST Target Group and Target Group Data Set
Name

@@FLMGRD @@FLMDSD Destination Group and Destination Group
Data Set Name

The following hierarchy will be used in the description:

Given the preceding hierarchy, the following table describes what each group
variable would contain during which translator phase of a PROMOTE from TEST to
REL.

┌───────┐
│ │
│ REL │ Key
│ │
└───┬───┘

│
│

┌───┴───┐
│ │
│ TEST │ Non-key
│ │
└───┬───┘

│
│

┌───┴───┐
│ │
│ DEV │ Key
│ │
└───────┘

Figure 7. Hierarchy Example for Group Description

Chapter 6. SCLM Variables and Metavariables 281

Table 12. SCLM Group Variable Description

Translator
Accounting
Group

Group
Found Target Group

Destination
Group

Verify TEST TEST REL REL

Copy TEST TEST REL REL

Purge key DEV TEST DEV REL

Purge non-key TEST TEST TEST REL

The purge translator is invoked twice during this promote due to the promotion
from a non-key group to a key group.

282 z/OS V1R2.0 ISPF SCLM Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504–1785, USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2001 283

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation,
Department TL3B, 3039 Cornwallis Road, Research Triangle Park, North Carolina,
27709–2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non_IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This book primarily documents information that is not intended to be used as
Programming Interfaces of ISPF.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

BookManager
C++
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
DFSMS/MVS
DFSORT
ESCON
FFST
GDDM
IBM

Language Environment
MVS
MVS/ESA
OS/2
OS/390
OS/390 Security Server
RACF
Resource Access Control Facility
SOMobjects
System View
VisualLift
VTAM

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

284 z/OS V1R2.0 ISPF SCLM Reference

Glossary of SCLM Terms

A
access key. An identifier used to restrict access to a
member.

accounting information. Accounting information is
stored in the SCLM VSAM accounting data sets and
consists of accounting and build map records.

accounting record. An SCLM control data record
containing statistical, historical, and dependency
information for a member under SCLM control.

action bar. The area at the top of an ISPF panel that
contains choices that give you access to actions
available on that panel. When you select an action bar
choice, ISPF displays an action bar pull-down menu.

alternate project definition. A project definition that
provides a version of the project environment which
differs from the default project definition.

application. Software that performs a function for an
end user.

API. Application Programming Interface

APT. Application Programming and Test

architecture. The organization of software components
to form integrated applications.

architecture definition. A means of organizing
components of an application into conceptual units. It
is SCLM’s method of defining an application’s
configuration. It describes how the components of an
application fit together and is used to drive both the
build and promote functions. Architecture definitions
are used to group components into applications,
sub-applications, and load modules.

architecture member. Defines an individual software
component, which may be a collection of other
architecture members, by specifying its relationship to
other software components of an application.

audit information. Information associated with a
member which describes when a member was
modified, how it was modified, and who modified it.
This information is stored in the SCLM VSAM audit
data sets.

audit trail. See audit information.

authorization code. An identifier used by SCLM to
control authority to update and promote members
within a hierarchy. These codes can be used to allow

concurrent development without the risk of module
collisions (overlayed changes).

authorization group. An identifier associated with a
set of authorization codes.

B
build. The process of transforming inputs into outputs
through the invocation of translators specified in the
language definition. Compilers, preprocessors, and
linkage editors are examples of translators that might
be invoked at build time.

build map. Internal data record containing a complete
analysis of the database at the time of the build; it
includes the names of all referenced members and the
last change date and version number of each member.

C
change code. An eight-character identifier used to
indicate the reason for an update or modification to a
member controlled by SCLM.

code. Program(s) written in a language that is subject
to a given translation process.

compilable member. A member recognized by the
compiler or translator as an independent unit or a
controlling unit for the language.

component. See software component.

concurrent updates. Concurrent updates occur when
two programmers update the same member at the
same time. This is supported through the use of
authorization codes and the Edit Compare tool or
alternate project definitions.

configuration management. See software configuration
management.

configuration management plan. See software
configuration management plan

control data. Information that SCLM stores about each
member under its control. The control data is stored in
the accounting and audit VSAM data sets defined for a
project.

copylib. A library containing include referenced
source code.

cross-reference record. Internal data record containing
Ada compilation unit/member relationship
information.

© Copyright IBM Corp. 1990, 2001 285

D
data base. SCLM-controlled VSAM data sets for a
project.

database administrator. See project administrator.

ddname substitution list. A string of ddnames
allocated for the translator. The ddname substitution
list is usually documented in the Programmer’s Guide
for compilers and linkage editors.

default architecture definition. Architecture definition
that is generated by SCLM when one is not specified as
input to a build. This is done when a source member is
built directly.

default project definition. The main project definition
used by an SCLM project.

dependency. Dependency describes a relationship
between a source member and the members it includes.
A source member has a dependency on a member
which it includes.

dependency information. Information on
dependencies is stored in the SCLM accounting record.

development group. All groups in the lowest level of
the hierarchy are known as ″development groups″.
These groups represent end-nodes with no other lower
groups promoting into them.

development layer. Layer of an SCLM hierarchy
consisting of development groups.

development life cycle. The process followed to create
an application. The process starts at the program
requirements gathering phase, moves to the design
phase, the development phase, and continues to the
release of the final product.

downward dependency. A dependency indicating a
compilation unit which must be compiled after the
current compilation unit is compiled.

draw down. During edit, SCLM copys the member
from its first occurrence in a key group in the library
concatenation into a development group and locks it.

dynamic include. An include for a source member
that cannot be resolved until after the translator
invocation.

dynamic reference. A reference that involves a
variable.

E
editable/non-editable. Source members (created by an
edit session) are editable; members produced by a
processor during a build are non-editable.

ellipsis. Three dots that follow a pull-down choice.
When you select a choice that contains an ellipsis, ISPF
displays a pop-up window.

F
function key. In previous releases of ISPF, a
programmed function (PF) key. This is a change in
terminology only.

G
group. A set of project data sets with the same
middle-level qualifier in the SCLM logical naming
convention.

H
hierarchical view. A path of groups (concatenation)
through the hierarchy. The path may start at any group
in the hierarchy and follows the promote path to the
topmost group in the hierarchy.

hierarchy. The organization of groups in a ranked
order, where each group is subordinate to the one
above it.

I
include. A member that is required to complete a
compile of the member that references it.

include-set. An include-set is used to associate an
included member name with the type or types in the
project which are searched to find a member with that
name.

integrate. To merge two or more software components
of an application into a single software application.

K
key group. Data is copied into this group and then
purged from the previous group, effectively ″moving″
the data. Non-key groups are used when a simple copy
is desired.

L
language definition. Specifies the set of translators to
be executed for SCLM functions PARSE, VERIFY,
BUILD, COPY, and PURGE. A language definition is
composed of one FLMLANGL macro followed by an
FLMTRNSL macro for each translator to be executed
for members of SCLM libraries whose language
attribute matches the value of the LANG keyword in
the FLMLANGL macro.

286 z/OS V1R2.0 ISPF SCLM Reference

layer. A given tier of the hierarchy, made up of groups
of equivalent rank.

level. See layer.

library (MVS). A partitioned data set.

lock. When a user locks a member, only that user can
change it. All other users are unable to change that
member until the member is promoted or unlocked.
When you lock a member, you specify an authorization
code. If two users need to change a part, they can use
different authorization codes.

lock service. Restricts (locks) a member to a
development group.

M
maximum promotable group. The topmost group to
which a member can be promoted.

member. The discrete element of an SCLM database,
representing a single data type of a software
component.

metavariable. A variable that includes many other
SCLM variables.

migrate. Registering software components in SCLM:
this includes identifying the component language, and
possibly the change code and authorization code.

migration. The process of introducing members into
SCLM control. Migration locks the member, parses it
according to the requested language, and stores the
information in the accounting data base. You can user
the migration utility to enter a large number of
members into a project’s data base, such as during
conversion to SCLM.

Modal pop-up window. A type of window that
requires you to interact with the panel in the pop-up
before continuing. This includes cancelling the window
or supplying information requested.

Modeless pop-up window. A type of window that
allows you to interact with the dialog that produced
the pop-up before interacting with the pop-up itself.

N
nested dependencies. Nested dependencies occur
when a source member includes another member,
which in turn includes another member. SCLM tracks
nested dependencies, so that when a member changes,
any member that includes it is rebuilt, no matter how
many levels of nesting there are.

non-key group. A group that data is copied into (as
opposed to moved into) during promotion.

P
parser. A program that reads an editable member to
determine dependency and statistical information about
the member. This information is stored in the SCLM
accounting data base.

predecessor date/time. The last modified date/time
stamp taken from the previous version of the current
member.

point-and-shoot text. Text on a screen that is cursor
sensitive.

pop-up window. A bordered temporary window that
displays over another panel.

predecessor verification. The process of verifying that
the previous version of a member has not changed.

predecessors. Previous versions of a member existing
at a higher level within the same hierarchical view.

primary commands. Editing commands that are
entered on the Command line.

primary group. A key or non-key group with two or
more groups promoting into it that must be allocated
when a hierarchy is to be accessed.

private library. A partitioned data set or partitioned
data set extended belonging to a group in the
development layer of the hierarchy.

project. A collection of libraries representing an
integrated SCLM data base, under a single high-level
qualifier.

project administrator. The person who maintains an
SCLM project.

project definition. Defines the SCLM library structure,
project control information, and language definitions. A
project definition is a load module used by SCLM at
run time. The source code for a project definition is
composed of macros.

project definition data. Project definitions and
language definitions which are used to create and
control an SCLM project.

project environment. Information which makes up an
SCLM project. There are three types of information:

v Project Definition Data

v User Applications Data

v Control Data

project identifier. The name assigned to the project
definition.

Project Partitioned Data Sets. MVS Partitioned Data
Sets where user application data is stored.

Glossary of SCLM Terms 287

promote. The process of moving an application or its
components from one level in the project hierarchy to
the next. Promotion out of a development group
removes the lock on editable members that were
successfully promoted.

promote path. The link between two groups along
which data moves from one subordinate group to the
next group in the hierarchy.

pull-down menu. A list of numbered choices
extending from the selection you made on the action
bar. The action bar selection will be highlighted. You
can select an action either by typing in its number and
pressing Enter or by selecting the action with your
cursor. ISPF displays the requested panel. If your
choice contains an ellipsis (...), ISPF displays a pop-up
window. When you exit this panel or pop-up, ISPF
closes the pull-down and returns you to the panel from
which you made the initial action bar selection.

push button. A rectangle with text inside. Push
buttons are used in windows for actions that occur
immediately when the push button is selected
(available only when you are running in GUI mode).

S
SCLM_id. Identifier used to communicate information
between the SCLM services. There is a unique
SCLM_id generated for each invocation of the INIT
service.

scope. The set of members (including architecture
definitions) which will be processed (verified, copied,
compiled, purged, etc.) by build or promote.

service. An SCLM function available via a command
or programming interface.

service parameter list. The options supplied when
invoking an SCLM service.

software component. Any input or output member
associated with an application, which together make up
all or a member of the application.

software configuration management. The method of
controlling and integrating software components to
produce high quality applications. Provides a common
point of integration for all planning and
implementation activities for a project.

software configuration management plan. A
formalized procedure for software configuration
management.

subapplications. Separate parts of an application
being developed within a project. Once the project is
completed, the parts are integrated to form the final
product.

syslib. A library containing source code not under
SCLM control. No dependency information is
maintained for members in a syslib.

T
text. Data present in its natural language form (not
translatable).

traceability. Capability to access and maintain records
of information about a software component, including
when the component was last changed and why.

translator. A load module, CLIST, or REXX program
that receives control from SCLM for execution. The
name of the translator is specified as the value of the
COMPILE keyword for the FLMTRNSL macro.
Examples of translators are compilers, assemblers,
linkage editors, text processors, DB2 preprocessors,
CICS preprocessors, utilities, and customer tools.

type. The third qualifier of the SCLM naming
convention for project partitioned data sets. Typically
identifies the kind of data maintained for a project
hierarchy. Examples of types are SOURCE, OBJECT and
LOAD.

U
unlock. To make a member (formerly locked out)
available for updating (usually associated with
promote).

unlock service. Removes the restriction (unlocks) on a
member to a development group.

upward dependency. A dependency indicating a
compilation unit that must be compiled before the
current compilation unit is compiled.

V
Version. A copy of a member as it existed at a
previous point in time.

Versioning. A function that enables you to retrieve a
version of a member. Useful for ″backing out″ changes.

288 z/OS V1R2.0 ISPF SCLM Reference

Index

Special Characters
@@FLM#AF 279
@@FLM#AL 279
@@FLM$C4 272, 278
@@FLM$CC 272, 278
@@FLM$CD 272, 278
@@FLM$CT 272, 278
@@FLM$IN 273, 278
@@FLM$IS 273, 278
@@FLM$MP 271, 278
@@FLM$UD 275, 278
@@FLMACC 271, 275
@@FLMACD 271, 275
@@FLMACK 271, 275
@@FLMALT 271, 275
@@FLMASG 271, 275
@@FLMATP 271, 275
@@FLMBD4 274, 275
@@FLMBDT 274, 275
@@FLMBIO 271, 275
@@FLMBLL 271, 275
@@FLMBMD 272, 275
@@FLMBTM 274, 275
@@FLMCD4 272, 275
@@FLMCDT 272, 275
@@FLMCLV 272, 275
@@FLMCML 272, 275
@@FLMCMS 272, 275
@@FLMCNS 272, 275
@@FLMCRF 272, 275
@@FLMCTM 272, 275
@@FLMCUN 275
@@FLMCUS 272, 275
@@FLMDBQ 272, 276
@@FLMDDN 273, 276
@@FLMDDO 274, 276
@@FLMDO0 272, 276
@@FLMDO1 272, 276
@@FLMDO2 272, 276
@@FLMDO3 272, 276
@@FLMDO4 272, 276
@@FLMDO5 272, 276
@@FLMDO6 272, 276
@@FLMDO7 273, 276
@@FLMDO8 273, 276
@@FLMDO9 273, 276
@@FLMDSD 273, 276
@@FLMDSF 273, 276
@@FLMDSN 271, 276
@@FLMDST 274, 276
@@FLMECR 273, 276
@@FLMETP 273, 276
@@FLMFDT 273, 276
@@FLMFNM 272, 276
@@FLMFTM 273, 276
@@FLMGRB 271, 276
@@FLMGRD 273, 276
@@FLMGRF 273, 276
@@FLMGRP 271, 277
@@FLMID4 272, 277
@@FLMIDT 272, 277

@@FLMINC 273, 277
@@FLMINF 274, 277
@@FLMITM 272
@@FLMLAN 273, 277
@@FLMLIS 273, 277
@@FLMLST 272, 277
@@FLMLVS 273, 277
@@FLMMBR 271, 277
@@FLMMD4 271, 277
@@FLMMDT 271, 277
@@FLMMNM 271, 277
@@FLMMSC 272, 277
@@FLMMTM 272, 277
@@FLMMVR 273, 277
@@FLMNCC 273, 277
@@FLMNCL 273, 277
@@FLMNCS 273, 277
@@FLMNIN 273, 277
@@FLMNUE 273, 277
@@FLMONM 274, 277
@@FLMOU0 274, 277
@@FLMOU1 274, 277
@@FLMOU2 274, 277
@@FLMOU3 274, 277
@@FLMOU4 274, 278
@@FLMOU5 274, 278
@@FLMOU6 274, 278
@@FLMOU7 274, 278
@@FLMOU8 274, 278
@@FLMOU9 274, 278
@@FLMPD4 274, 278
@@FLMPDT 274, 278
@@FLMPRJ 274, 278
@@FLMPRL 274, 278
@@FLMPTM 274, 278
@@FLMPUS 274, 278
@@FLMSIZ 271, 278
@@FLMSRF 273, 278
@@FLMSTA 271, 278
@@FLMSTP 274, 278
@@FLMTLL 275, 278
@@FLMTLS 275, 278
@@FLMTOG 274, 278
@@FLMTVS 275, 278
@@FLMTYP 271, 278
@@FLMUID 274, 278
@@FLMVER 274, 278
$acct_info 14
$list_info 15

accounting records 15
$msg_array 13
$stats_info 15

A
access key

incorrect 43
locking a member 64
purpose for 65
resetting 92
variable 275

access key (continued)
verification 65

accounting group
definition of 39
variable 277

accounting information, field format 14
accounting member variable 271, 277
accounting record type variable 271, 275
accounting records

DBACCT service 36
DELETE service 42
DELGROUP service 44
metavariables 279
retrieve 36
variables 270

accounting status variable 271, 278
accounting type variable 271, 278
ACCTINFO Service 25
allocating SCLM data sets pointer

parameters 12
arrays

accounting information 14
list information 15
message 13
statistical information 15

assignment statement variable 271, 275
AUTHCODE Service 28
authorization code

variable 271, 275
verification

LOCK service 64, 66
MIGRATE service 69
SAVE service 84

authorization code change variable 271,
275

B
blank lines variable 271, 275
buffer size

definition of 181
variable 271, 278

build function
build map variables 271, 277
parameters 33

build map information variable 271
build map variable 271, 278
BUILD service 32
build user exit routine specification 34

C
call format

C 11
COBOL 11
FORTRAN 10
Pascal 10
PL/I 11

calling function name variable 272, 276

© Copyright IBM Corp. 1990, 2001 289

change code
array record 15
variables 272, 278

character parameters 12
CLIST

command procedure 8
variable 6

code, authorization
variable 271, 275
verification

LOCK service 64, 66
MIGRATE service 69
SAVE service 84

code, change
array record 15
variables 272, 278

code, return
BUILD service 35
DBACCT service 37
DBUTIL service 41
DELETE service 43
DELGROUP service 47
DSALLOC service 50
EDIT service 54
END service 55
EXPORT service 57
FREE service 58
general categories 20
GOODRC 192
IMPORT service 61
INIT service 63
LOCK service 67
MIGRATE service 70
PARSE service 75
PROMOTE service 79
RPTARCH service 82
SAVE service 86
START service 88
STORE service 91
UNLOCK service 94
VERDEL service 96
VERINFO service 99
VERRECOV service 102

command
data set conventions 7
FLMCMD 6
interactive processing 8
invocation format 6
QUIT 8
service invocation 5, 6

command processing, interactive 8
comment lines variable 272, 275
comment statements variable 272, 275
considerations, performance 7
control options

DASDUNIT 160
control statements variable 272, 275
cross reference variables 271, 275
CU list variable 272, 277

D
DASDUNIT control option 160
data set naming conventions

ALTC parameter 175
FLMGROUP 174
using FLMALTC 148

data set protection 12
database contents utility, selection criteria

pattern examples 13
database qualifier

format 14
variable 272, 276

DBACCT service 36
DBUTIL service 38
DDNAME parameters 12
ddname substitution list

use of 131
variable 273, 276

default type variable 273, 278
defining software component 147
DELETE service 42
DELGROUP service 44
dependencies pointer variable 273, 277
DSALLOC service 48
dynamic includes variable 273, 277

E
EDIT service 51
END service 54
EXPACCT control option 158
EXPORT service 55
extended CREF type variable 273
Extended Type 196

F
field name metavariables 279
field name variables 271, 275
FILE format 6
flexible data set names

ALTC parameter 175
FLMGROUP 174
using FLMALTC 148

FLMABEG macro 129
FLMAEND macro 130
FLMAGRP macro 130
FLMALLOC macro, defining language

definitions 130
FLMALTC macro 148
FLMATVER macro 152
FLMCMD command

CLIST command procedure 8
command line format 7
data set example 8
FILE format 6
interactive processing 8
invocation format 6
parameters 6

FLMCNTRL macro 155
FLMCPYLB macro 173
FLMCPYLB required statements 1
FLMCSPDB translator 199
FLMDTLC translator 202
FLMGROUP macro 174
FLMINCLS macro 176
FLMLANGL macro 180
FLMLNK subroutine interface

call format 9
character parameters 12
parameter conventions 9
pointer parameters 13

FLMLPCBL parser 203
FLMLPFRT parser 206
FLMLPGEN parser

used as a CLIST or REXX parser 211
used as a generic parser 211
used as a PL/I parser 210
used as a TEXT parser 211
used as an Assembler parser 210

FLMLRASM REXX Assembler
parser 214

FLMLRBLD macro 182
FLMLRC2 C, C++, and Resource file

parser for workstation source 225
FLMLRC37 REXX C370 parser 228
FLMLRCBL REXX COBOL parser 218
FLMLRCIS MVS C/C++ parser with

include set support 222
FLMLRDTL translator 232
FLMLRIPF Script and OS/2 IPF Source

Sarser 233
FLMLSS parser 236
FLMLTWST translator 240
FLMSYSLB macro 183
FLMTBMAP translator 256
FLMTCOND macro 185
FLMTMSI translator 258
FLMTOPTS macro 189
FLMTPRE translator 259
FLMTPST translator 261
FLMTRNSL 190
FLMTXFER translator 263
FLMTYPE macro 196
FREE service 58
function invocation variables

build group 276
date 273, 276
time 273, 276

G
GOODRC 192
group

development library 64
variables description 281
verification 64

group found variable 273, 276
group_list 183

I
IMPORT service 59
include reference variable 273, 278
include-sets for includes variable 273
INIT service 62
initialize parameter variables 10
interactive command processing 8
intermediate variables 275, 279
ISPF variables 17

K
keywords

assembler call statement 10
FLMALLOC macro 130
FLMLANGL macro 180
FLMLRBLD macro 182

290 z/OS V1R2.0 ISPF SCLM Reference

keywords (continued)
FLMTRNSL macro 190

L
language

constructs 266
variable 273, 277

language restrictions
on non-explicit references 266
on separation of references 267

list information array 15
listing data set, output specification 34
LOCK service

invocation of 63

M
macro

FLMABEG 129
FLMAEND 130
FLMAGRP 130
FLMALLOC 132
FLMALTC 148
FLMATVER 152
FLMCNTRL 157
FLMCPYLB 173
FLMGROUP 174
FLMINCLS 176
FLMLANGL 180
FLMLRBLD 182
FLMSYSLB 183
FLMTCOND 185
FLMTOPTS 189
FLMTRNSL 190
FLMTYPE 196
instructions 127

messages
array 13
DBUTIL service 40
output specification 34
RPTARCH service 82

metavariables
cross-reference 279
field names 279
functions 279
list of 279
report 271, 279
uses for 279

MIGRATE service 68
migration considerations

FLMCPYLB statements required 1
SCLM 1

N
NEXTGRP Service 71
notation conventions 5, 127

O
OPTFLAG 192
options, control

DASDUNIT 160
OPTOVER control option 192

output member name variable 274, 277

P
packed data set, saving 68, 83
parameters

ACCTINFO service 25
AUTHCODE service 28
BUILD service 33
character 12
DBACCT service 36
DBUTIL service 38
DDNAME 12
DELETE service 43
DELGROUP service 45
DSALLOC service 49
EDIT service 52
END service 55
EXPORT service 56
FLMABEG macro 129
FLMAEND macro 130
FLMAGRP macro 130
FLMALLOC macro 133
FLMALTC macro 148
FLMATVER macro 152
FLMCNTRL macro 157
FLMCPYLB macro 173
FLMGROUP macro 174
FLMINCLS macro 176
FLMLANGL macro 180
FLMLRBLD macro 182
FLMSYSLB macro 183
FLMTCOND macro 185
FLMTOPTS macro 189
FLMTRNSL macro 190
FLMTYPE macro 196
FREE service 58
IMPORT service 60
INIT service 62
LOCK service 66
MIGRATE service 69
NEXTGRP service 71
PARSE service 74
pointer 13
PROMOTE service 77
RPTARCH service 81
SAVE service 84
START service 88
STORE service 90
UNLOCK service 93
VERDEL service 95
VERINFO service 97
VERRECOV service 100

PARSE service
invocation of 73

parser restrictions 266
Pascal

integer variable 21
program sample 105

patterns for selection criteria 12
performance considerations 7
PL/I program sample 121
pointer parameters

$acct_info 14
$list_info 15
$msg_array 13
$stats_info 15

precedence verification 64
predecessor, definition of 64
processing interactive command 8
program sample, Pascal 105
program sample, PL/I 121
PROMOTE service 76

R
report

cutoff 81
output specification 34, 70

return codes
BUILD service 35
DBACCT service 37
DBUTIL service 41
DELETE service 43
DELGROUP service 47
DSALLOC service 50
EDIT service 54
END service 55
EXPORT service 57
FREE service 58
general categories 20
GOODRC 192
IMPORT service 61
INIT service 63
LOCK service 67
MIGRATE service 70
PARSE service 75
PROMOTE service 79
RPTARCH service 82
SAVE service 86
START service 88
STORE service 91
UNLOCK service 94
VERDEL service 96
VERINFO service 99
VERRECOV service 102

RPTARCH service 80

S
sample program

Pascal 105
PL/I 121

SAVE service 83
SCLM internal data pointer

definition of 14
variable 274, 277

SCLM metavariables
account report fixed

(@@FLM#AF) 279
account report long

(@@FLM#AL) 279
SCLM migration considerations 1
SCLM services

data set protection 12
general discussion 5
performance considerations 7

SCLM variables
access key (@@FLMACK) 271, 275
accounting group (@@FLMGRP) 271,

277
accounting group data set name

(@@FLMDSN) 271, 276

Index 291

SCLM variables (continued)
accounting member

(@@FLMMBR) 271, 277
accounting record type

(@@FLMATP) 271, 275
accounting status (@@FLMSTA) 271,

278
accounting type (@@FLMTYP) 271,

278
alternate project definition

(@@FLMALT) 271, 275
assignment statements

(@@FLMASG) 271, 275
authorization code

(@@FLMACD) 271, 275
authorization code change

(@@FLMACC) 271, 275
blank lines (@@FLMBLL) 271, 275
buffer size in bytes (@@FLMSIZ) 271,

278
build group (@@FLMGRB) 271, 276
build map (@@FLM$MP) 271, 278
build map date (@@FLMMD4) 271,

277
build map date (@@FLMMDT) 271,

277
build map information

(@@FLMBIO) 271, 275
build map name

(@@FLMMNM) 271, 277
build map time (@@FLMMTM) 272,

277
build map type (@@FLMMSC) 272,

277
build mode (@@FLMBMD) 272, 275
calling function name

(@@FLMFNM) 272, 276
change code (@@FLM$CC) 272, 278
change code data (@@FLM$C4) 272
change code data (@@FLM$CD) 272
change code date (@@FLM$C4) 278
change code date (@@FLM$CD) 278
change code time (@@FLM$CT) 272,

278
change date (@@FLMCD4) 272, 275
change date (@@FLMCDT) 272, 275
change group (@@FLMCLV) 272, 275
change time (@@FLMCTM) 272, 275
change user ID (@@FLMCUS) 272,

275
comment lines (@@FLMCML) 272,

275
comment statements

(@@FLMCMS) 272, 275
control statements (@@FLMCNS) 272
control statments (@@FLMCNS) 275
creation date (@@FLMID4) 272, 277
creation date (@@FLMIDT) 272, 277
creation time (@@FLMITM) 272
CREF type (@@FLMCRF) 272, 275
CU list (@@FLMLST) 272, 277
data set name for OUT0

(@@FLMDO0) 272, 276
data set name for OUT1

(@@FLMDO1) 272, 276
data set name for OUT2

(@@FLMDO2) 272, 276

SCLM variables (continued)
data set name for OUT3

(@@FLMDO3) 272, 276
data set name for OUT4

(@@FLMDO4) 272, 276
data set name for OUT5

(@@FLMDO5) 272, 276
data set name for OUT6

(@@FLMDO6) 272, 276
data set name for OUT7

(@@FLMDO7) 273, 276
data set name for OUT8

(@@FLMDO8) 273, 276
data set name for OUT9

(@@FLMDO9) 273, 276
database qualifier (@@FLMDBQ) 272,

276
DDNAME substitution list

(@@FLMDDN) 273, 276
default type (@@FLMSRF) 273, 278
dependencies pointer

(@@FLMLIS) 273, 277
destination group

(@@FLMGRD) 273, 276
destination group data set name

(@@FLMDSD) 273, 276
dynamic includes pointer

(@@FLMINC) 273, 277
extended CREF type

(@@FLMECR) 273, 276
extended type of source member

(@@FLMETP) 273, 276
function invocation date

(@@FLMFDT) 273, 276
function invocation time

(@@FLMFTM) 273, 276
group found (@@FLMGRF) 273, 276
group found data set name

(@@FLMDSF) 273, 276
include (@@FLM$IN) 273, 278
include sets for includes

(@@FLM$IS) 273, 278
language (@@FLM) 277
language (@@FLMLAN) 273
language version (@@FLMLVS) 273,

277
member version (@@FLMMVR) 273,

277
number of change codes

(@@FLMNCC) 273, 277
number of includes

(@@FLMNIN) 273, 277
number of noncomment lines

(@@FLMNCL) 273, 277
number of noncomment statements

(@@FLMNCS) 273, 277
number of user entries

(@@FLMNUE) 273, 277
OUT0 member name

(@@FLMOU0) 274, 277
OUT1 member name

(@@FLMOU1) 274, 277
OUT2 member name

(@@FLMOU2) 274, 277
OUT3 member name

(@@FLMOU3) 274, 277

SCLM variables (continued)
OUT4 member name

(@@FLMOU4) 274, 278
OUT5 member name

(@@FLMOU5) 274, 278
OUT6 member name

(@@FLMOU6) 274, 278
OUT7 member name

(@@FLMOU7) 274, 278
OUT8 member name

(@@FLMOU8) 274, 278
OUT9 member name

(@@FLMOU9) 274, 278
output member name

(@@FLMONM) 274, 277
predecessor date (@@FLMBD4) 274,

275
predecessor date (@@FLMBDT) 274,

275
predecessor time (@@FLMBTM) 274,

275
project (@@FLMPRJ) 274, 278
prolog lines (@@FLMPRL) 274, 278
promote date (@@FLMPD4) 274, 278
promote date (@@FLMPDT) 274, 278
promote time (@@FLMPTM) 274, 278
promote user ID (@@FLMPUS) 274,

278
SCLM internal data pointer

(@@FLMINF) 274, 277
SCLM version (@@FLMVER) 274,

278
static pointer (@@FLMSTP) 274, 278
sysprint DDNAME

(@@FLMDDO) 274, 276
system user ID (@@FLMUID) 274,

278
target group (@@FLMTOG) 274, 278
target group data set name

(@@FLMDST) 274, 276
top CU name (@@FLMCUN) 275
total lines (@@FLMTLL) 275, 278
total statements (@@FLMTLS) 275,

278
translator version (@@FLMTVS) 275,

278
user data entry (@@FLM$UD) 275,

278
selection criteria 12
selection parameters 12
service

ACCTINFO 25
AUTHCODE 28
BUILD 32
character parameters 12
DBACCT 36
DBUTIL 38
DELETE 42
DELGROUP 44
DSALLOC 48
EDIT 51
END 54
EXPORT 55
FLMCMD interface 6
FREE 58
IMPORT 59
INIT 62

292 z/OS V1R2.0 ISPF SCLM Reference

service (continued)
interactive command processing 8
invocation from programs 5
LOCK 63
MIGRATE 68
NEXTGRP 71
notation conventions 5
PARSE 73
pointer parameters 13
PROMOTE 76
return code categories 20
RPTARCH 80
SAVE 83
START 87
STORE 89
UNLOCK 92
VERDEL 95
VERINFO 97
VERRECOV 100

SREF statement, using 182
START service 87
static pointer

definition of 14
using 13
variable 274, 278

statistical information
array 15
record field format 15

STORE service
invoking 89

sysprint ddname variable 274

T
title, on tailored report 40
top CU name

variable 275
translators

FLMCSPDB 199
FLMDTLC 202
FLMLPCBL 203
FLMLPFRT 206
FLMLPGEN 209
FLMLRASM 214
FLMLRC2 225
FLMLRC37 228
FLMLRCBL 218
FLMLRCIS 222
FLMLRDTL 232
FLMLRIPF 233
FLMLSS 236
FLMLTWST 240
FLMTBMAP 256
FLMTMSI 258
FLMTPRE 259
FLMTPST 261
FLMTXFER 263

U
UNLOCK service 92
user data entries

array record 15
variable 275, 278

utilities function, DBUTIL service 38

V
variable 273
variables

CLIST 6
COBOL return code 21
description of 269
description of group 281
field names 271
FORTRAN 10
functions 271
initialize parameter 10, 12
ISPF, used by SCLM services 17
list of 270
Pascal 10
report 271
uses for 270

VERDEL service 95
verification

access key 65
authorization code 64
build output 65
group 64
predecessor 64

VERINFO service 97
VERRECOV service 100
VSAM data set, specifying with

FLMCNTRL macro 152
VSAM Record Level Sharing 155, 158
VSAMRLS parameter 155, 158

Index 293

294 z/OS V1R2.0 ISPF SCLM Reference

����

File Number: S370/4300-39
Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4818-01

	Contents
	Preface
	Who Should Use This Book
	What Is in This Book

	Summary of Changes
	ISPF Product Changes
	ISPF DM Component Changes
	ISPF PDF Component Changes
	ISPF SCLM Component Changes
	ISPF Client/Server Component Changes
	ISPF User Interface Considerations
	ISPF Migration Considerations
	ISPF Profiles
	Year 2000 Support for ISPF

	What’s in the z/OS V1R2.0 ISPF library?
	z/OS V1R2.0 ISPF

	Elements and Features in z/OS
	Chapter 1. Migrating from Previous Versions of SCLM
	FLMCPYLB Statements Required for IOTYPE=A
	Versioning Data Sets
	Include Sets
	Year 2000 Support
	FLMALLOC Processing for IOTYPE S
	Load Module Accounting Records and SSI Information

	Chapter 2. SCLM Services
	Invoking the SCLM Services
	Notation Conventions Used in this Chapter
	Command Invocation of the SCLM Services
	The FLMCMD Interface
	FLMCMD Parameter Conventions
	Using Command Invocation Variables
	Using the FLMCMD File Format
	Performance Considerations
	Command Data Set Conventions
	Interactive Command Processing

	Call Invocation of the SCLM Services
	The FLMLNK Subroutine Interface
	FLMLNK Parameter Conventions
	FORTRAN, Pascal, and C
	PL/I
	COBOL

	Types of Parameters
	DDNAME Parameters
	Character Parameters
	Selection Parameters
	Pointer Parameters
	Pointer Parameter Descriptions

	ISPF Variables
	SCLM Service Return Codes

	FLMCMD Command Processor Return Codes
	FLMLNK Call Processor Return Codes
	SCLM Service Messages
	SCLM Service Descriptions
	ACCTINFO—Retrieve Accounting Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes

	AUTHCODE—Retrieve or Set Authorization Code for Selected Members
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation Format
	Program Invocation Format
	Example of an AUTHCODE Report

	BUILD—Build a Member
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	DBACCT—Retrieve Accounting Records for a Member
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	DBUTIL—Generate a Tailored Output Data Set and Report
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation

	DELETE—Delete Database Components
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	DELGROUP—Delete Group Database Components
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	DSALLOC—Allocate Data Sets for Group/Type
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	EDIT— Edit a Member of a Controlled Library
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation Format
	Program Invocation Format

	END— End an SCLM Services Session
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	EXPORT—Extract SCLM Accounting Information for a Group
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	FREE—Free an SCLM ID
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	IMPORT—Import SCLM Accounting Information to Current Project
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	INIT—Generate an SCLM ID
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	LOCK—Lock a Member or Assign an Access Key
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	MIGRATE—Create Accounting for Selected Members
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	NEXTGRP— Retrieve Next Group in SCLM Hierarchy
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	PARSE—Parse a Member for Statistical and Dependency Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	PROMOTE—Promote a Member from One Library to Another
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	RPTARCH—Generate an SCLM Architecture Report
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Command Invocation

	SAVE—Lock, Parse, and Store a Member
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	START—Generate an Application ID for a Services Session
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	STORE—Store Member Information in an Accounting Record
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Example
	Call Invocation

	UNLOCK—Unlock a Member in a Development Library
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes
	Examples
	Command Invocation
	Call Invocation

	VERDEL—Delete Version and Audit Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes

	VERINFO—Retrieve Version and Audit Information
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes

	VERRECOV—Recover a Version
	Command Invocation Format
	Call Invocation Format
	Parameters
	Return Codes

	Chapter 3. Sample Programs Using SCLM Services
	Pascal Example
	Main Program FLMSRV1
	Included Member FLMSRV1D
	Included Member FLMSRV1S

	PL/I Example

	Chapter 4. SCLM Macros
	Notes on Using the SCLM Macros
	FLMABEG Macro
	Macro Format
	Parameters
	Example

	FLMAEND Macro
	Macro Format
	Parameters

	FLMAGRP Macro
	Macro Format
	Parameters
	Example

	FLMALLOC Macro
	Macro Format
	Parameters
	Defining a Software Component Using the FLMALLOC Macro

	Example 1
	Example 2
	Example 3

	FLMALTC Macro
	Macro Format
	Parameters
	Example

	FLMATVER Macro
	Macro Format
	Parameters
	Example

	FLMCNTRL Macro
	Macro Format
	Parameters
	Example

	FLMCPYLB Macro
	Macro Format
	Parameters
	Example

	FLMGROUP Macro
	Macro Format
	Parameters
	Example 1
	Example 2

	FLMINCLS Macro
	Macro Format
	Parameters
	Example 1
	Example 2
	Example 3

	FLMLANGL Macro
	Macro Format
	Parameters
	Example 1

	FLMLRBLD Macro
	Macro Format
	Parameters
	Examples

	FLMSYSLB Macro
	Macro Format
	Parameters
	Example

	FLMTCOND Macro
	Macro Format
	Parameters
	Examples

	FLMTOPTS Macro
	Macro Format
	Parameters
	Examples

	FLMTRNSL Macro
	Macro Format
	Parameters
	Examples

	FLMTYPE Macro
	Macro Format
	Parameters
	Example

	Chapter 5. SCLM Translators
	FLMCSPDB DB2 Bind/Free Translator
	FLMDTLC DTL Processor Build Translator
	FLMLPCBL COBOL Parser
	FLMLPFRT FORTRAN Parser
	FLMLPGEN General Purpose Parser
	FLMLRASM REXX Assembler Parser
	FLMLRCBL REXX COBOL Parser
	FLMLRCIS MVS C/C++ parser with include set support
	FLMLRC2 C, C++, and Resource file parser for workstation source
	FLMLRC37 REXX C370 Parser
	FLMLRDTL REXX DTL Parser
	FLMLRIPF Script and OS/2 IPF Source Parser
	FLMLSS General Purpose Parser
	FLMLTWST Workstation Build Translator
	FLMTBMAP Build Map Print - Build Translator
	FLMTMSI Interface to SCRIPT/VS
	FLMTPRE
	FLMTPST
	FLMTXFER Workstation Transfer - Build Translator
	SCLM Parser Restrictions
	Non-Explicit References
	Separation of References

	Chapter 6. SCLM Variables and Metavariables
	SCLM Variable and Metavariable Descriptions
	SCLM Variable and Metavariable Tables
	SCLM Variable Descriptions, Variable Names, and Their SCLM Functions
	SCLM Variables and Their SCLM Functions
	SCLM Metavariable Descriptions, Metavariable Names, and Their SCLM Functions
	SCLM Metavariable Contents

	Description of Group Variables

	Notices
	Programming Interface Information
	Trademarks

	Glossary of SCLM Terms
	Index

